6 resultados para MODEL MEMBRANES

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC. The main transition temperature, T-m, Was unchanged, but additional phase transitions appeared above T-m. oRTD-1 induced similar effects. However, the effects were not observable below a peptide:lipid molar ratio of 1:50, which correlates with the weaker biological activity of oRTD-1. Small-and wide-angle X-ray scattering revealed for DPPG the appearance of additional structural features induced by RTP-1 above T-m, which were interpreted as correlated lamellar structures, with increased order of the fatty acyl side chains of the lipid. It is proposed that after initial electrostatic interaction of the cationic rim of the peptide with the anionic DPPG headgroups, leading to stabilized lipid-peptide clusters, the hydrophobic face of the peptide assists in its interaction with the fatty acyl side chains eventually leading to membrane disruption. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial organization of plasma membrane components in discrete microdomains is thought to be a key factor in the generation of distinct signal outputs. A detailed characterization of plasma membrane microdomains, including descriptions of their size, dynamics and abundance, has proved to be a taxing problem for cell biologists and biophysicists. The use of novel techniques is providing exciting new insights into the challenging problem of plasma membrane microstructure and has allowed the visualization of domains with the characteristics expected of lipid rafts - microdomains of the plasma membrane enriched in cholesterol and sphingolipids. This review focuses on some of these recent advances and uses Ras signaling as a paradigm for understanding inner plasma membrane organization and the role of lipid rafts in cellular function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hypothesis that lipid rafts exist in plasma membranes and have crucial biological functions remains controversial. The lateral heterogeneity of proteins in the plasma membrane is undisputed, but the contribution of cholesterol-dependent lipid assemblies to this complex, non-random organization promotes vigorous debate. In the light of recent studies with model membranes, computational modelling and innovative cell biology, I propose an updated model of lipid rafts that readily accommodates diverse views on plasma-membrane micro-organization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we have demonstrated the interactions of kalata B1 and its naturally occurring analogue kalata B6 with five model lipid membranes and have analyzed the binding kinetics using surface plasmon resonance. Two kalata peptides showed a higher affinity for the phosphatidylethanolamine-containing membranes, indicating that the peptides would bind selectively to bacterial membranes. Also we have optimized the procedure for the immobilization of five liposome mixtures and have shown that the procedure provides reproducible levels of immobilized liposomes and could be used to screen the selective binding of putative antimicrobial peptides to model mammalian or microbial phospholipid membranes. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microencapsulation of cell spheroids in an immunoselective, highly biocompatible, biomembrane offers a way to create viable implantation options in the treatment of insulin-dependent diabetes mellitus (IDDM). Traditionally the encapsulation process has been achieved through the injection/extrusion of alginate/cell mixtures into a calcium chloride solution to produce calcium alginate capsules around the cells. A novel alternative is explored here through a procedure using an emulsion process to produce thin adherent calcium alginate membranes around cell spheroids. In this study, a thorough investigation has been used to establish the emulsion process parameters that are critical to the formation of a coherent alginate coat both on a model spheroid system and subsequently on cell spheroids. Optical and fluorescence microscopy are used to assess the morphology and coherence of the calcium alginate/ poly-L-ornithine/alginate (APA) capsules produced. (c) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipoamino acids (LAAs) are promoieties able to enhance the amphiphilicity of drugs, facilitating their interaction with cell membranes. Experimental and computational studies were carried out on two series of lipophilic amide conjugates between a model drug (tranylcypromine, TCP) and LAA or alkanoic acids containing a short, medium or long alkyl side chain (C-4 to C-16). The effects of these compounds were evaluated by monolayer surface tension analysis and differential scanning calorimetry using dimyristoylphosphatidylcholine nnonolayers and liposomes as biomembrane models. The experimental results were related to independent calculations to determine partition coefficient and blood-brain partitioning. The comparison of TCP-LAA conjugates with the related series of TCP alkanoyl amides confirmed that the ability to interact with the biomembrane models is not due to the mere increase of lipophilicity, but mainly to the amphipatic nature and the kind of LAA residue. (C) 2005 Elsevier B.V. All rights reserved.