15 resultados para MIKTOARM STAR

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports thermoset blends of bisphenol A-type epoxy resin (ER) and two amphiphilic four-arm star-shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4'-Methylenedianiline (MDA) was used as a curing agent. The first star-shaped diblock copolymer with 70 wt% ethylene oxide (EO), denoted as (PPO-PEO)(4), consists of four PPO-PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt% EO, denoted as (PEO-PPO)(4), contains four PEO-PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small-angle X-ray scattering. It was found that the MDA-cured ER/(PPO-PEO)(4) blends are not macroscopically phase-separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO-PEO)(4) blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO-PEO)(4) blends show composition-dependent nanostructures on the order of 10-30 nm. The 80/20 ER/(PPO-PEO)(4) blend displays spherical PPO micelles uniformly dispersed in a continuous ER-rich matrix. The 60/40 ER/(PPO-PEO)(4) blend displays a combined morphology of worm-like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA-cured ER/(PEO-PPO)(4) blends. The MDA-cured ER/(PEO-PPO)(4) blends with (PEO-PPO)(4) content up to 50 wt% exhibit phase-separated structures on the order of 0.5-1 mu m. This can be considered to be due to the different EO content and block sequence of the (PEO-PPO)(4) copolymer. (c) 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Designing novel proteins with site-directed recombination has enormous prospects. By locating effective recombination sites for swapping sequence parts, the probability that hybrid sequences have the desired properties is increased dramatically. The prohibitive requirements for applying current tools led us to investigate machine learning to assist in finding useful recombination sites from amino acid sequence alone. Results: We present STAR, Site Targeted Amino acid Recombination predictor, which produces a score indicating the structural disruption caused by recombination, for each position in an amino acid sequence. Example predictions contrasted with those of alternative tools, illustrate STAR'S utility to assist in determining useful recombination sites. Overall, the correlation coefficient between the output of the experimentally validated protein design algorithm SCHEMA and the prediction of STAR is very high (0.89). Conclusion: STAR allows the user to explore useful recombination sites in amino acid sequences with unknown structure and unknown evolutionary origin. The predictor service is available from http://pprowler.itee.uq.edu.au/star.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first synthesis of amphiphilic four-arm star diblock copolymers consisting of styrene (STY) and acrylic acid (AA) made using reversible addition-fragmentation chain transfer (RAFT; Z group approach with no star-star coupling). The polymerization proceeded in an ideal living manner. The size of the poly(AA(132)-STYm)(4) stars in DMF were small and close to 7 nm, suggesting no star aggregation. Slow addition of water (pH = 6.8) to this mixture resulted in aggregates of 15 stars per micelle with core-shell morphology. Calculations showed that the polyAA blocks were slightly extended with a shell thickness of 15 nm. Treatment of these micelles with piperidine to cleave the block arms from the core resulted in little or no change on micelle size or morphology, but the polyAA shell thickness was close to 29 nm (33 nm is the maximum at full extension) suggesting a release of entropy when the arms are detached from the core molecule. In this work we showed through the use of star amphiphilic polymers that the micelle size, aggregation number, and morphology could be controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the result of investigations into two theories to explain the star formation rate (SFR)-density relationship. For regions of high galaxy density, either there are fewer star-forming galaxies or galaxies capable of forming stars are present but some physical process is suppressing their star formation. We use H I Parkes All-Sky Survey's (HIPASS) HI detected galaxies and infrared and radio fluxes to investigate SFRs and efficiencies with respect to local surface density. For nearby (vel < 10 000 km s(-1)) H I galaxies, we find a strong correlation between H I mass and SFR. The number of H I galaxies decreases with increasing local surface density. For H I galaxies (1000 < vel < 6000 km s(-1)), there is no significant change in the SFR or the efficiency of star formation with respect to local surface density. We conclude that the SFR-density relation is due to a decrease in the number of H I star-forming galaxies in regions of high galaxy density and not to the suppression of star formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive observed H alpha and R-band luminosity densities of an H I-selected sample of nearby galaxies using the SINGG sample to be l'(H alpha) = (9.4 +/- 1.8) x 10(38) h(70) ergs s(-1) Mpc(-3) for H alpha and l'(R) = (4.4 +/- 9.7) x 10(37) h(70) ergs s(-1) angstrom(-1) Mpc(-3) in the R band. This R-band luminosity density is approximately 70% of that found by the Sloan Digital Sky Survey. This leads to a local star formation rate density of log ((rho)over dot(SFR) [M-circle dot yr(-1) Mpc(-3)]) = -1.80(-0.07)(+0.13)(random) +/- 0.03(systematic) + log (h(70)) after applying a mean internal extinction correction of 0.82 mag. The gas cycling time of this sample is found to be t(gas) = 7.5(-2.1)(+1.3) Gyr, and the volume-averaged equivalent width of the SINGG galaxies is EW(H alpha) = 28.8(-4.7)(+7.2) angstrom (21.2-3.5+4.2 angstrom without internal dust correction). As with similar surveys, these results imply that (rho)over dot(SFR)(z) decreases drastically from z similar to 1.5 to the present. A comparison of the dynamical masses of the SINGG galaxies evaluated at their optical limits with their stellar and H I masses shows significant evidence of downsizing: the most massive galaxies have a larger fraction of their mass locked up in stars compared with H I, while the opposite is true for less massive galaxies. We show that the application of the Kennicutt star formation law to a galaxy having the median orbital time at the optical limit of this sample results in a star formation rate decay with cosmic time similar to that given by the. (rho)over dot(SFR)(z) evolution. This implies that the (rho)over dot(SFR)(z) evolution is primarily due to the secular evolution of galaxies, rather than interactions or mergers. This is consistent with the morphologies predominantly seen in the SINGG sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a detailed investigation into the recent star formation histories of 5697 luminous red galaxies (LRGs) based on the H delta (4101 angstrom), and [O II] (3727 angstrom) lines and the D4000 index. LRGs are luminous (L > 3L*) galaxies which have been selected to have photometric properties consistent with an old, passively evolving stellar population. For this study, we utilize LRGs from the recently completed 2dF-SDSS LRG and QSO Survey (2SLAQ). Equivalent widths of the H delta and [O II] lines are measured and used to define three spectral types, those with only strong H delta absorption (k+a), those with strong [O II] in emission (em) and those with both (em+a). All other LRGs are considered to have passive star formation histories. The vast majority of LRGs are found to be passive (similar to 80 per cent); however, significant numbers of k+a (2.7 per cent), em+a (1.2 per cent) and em LRGs (8.6 per cent) are identified. An investigation into the redshift dependence of the fractions is also performed. A sample of SDSS MAIN galaxies with colours and luminosities consistent with the 2SLAQ LRGs is selected to provide a low-redshift comparison. While the em and em+a fractions are consistent with the low-redshift SDSS sample, the fraction of k+a LRGs is found to increase significantly with redshift. This result is interpreted as an indication of an increasing amount of recent star formation activity in LRGs with redshift. By considering the expected lifetime of the k+a phase, the number of LRGs which will undergo a k+a phase can be estimated. A crude comparison of this estimate with the predictions from semi-analytic models of galaxy formation shows that the predicted level of k+a and em+a activities is not sufficient to reconcile the predicted mass growth for massive early types in a hierarchical merging scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an application of Mathematical Morphology (MM) for the classification of astronomical objects, both for star/galaxy differentiation and galaxy morphology classification. We demonstrate that, for CCD images, 99.3 +/- 3.8% of galaxies can be separated from stars using MM, with 19.4 +/- 7.9% of the stars being misclassified. We demonstrate that, for photographic plate images, the number of galaxies correctly separated from the stars can be increased using our MM diffraction spike tool, which allows 51.0 +/- 6.0% of the high-brightness galaxies that are inseparable in current techniques to be correctly classified, with only 1.4 +/- 0.5% of the high-brightness stars contaminating the population. We demonstrate that elliptical (E) and late-type spiral (Sc-Sd) galaxies can be classified using MM with an accuracy of 91.4 +/- 7.8%. It is a method involving fewer 'free parameters' than current techniques, especially automated machine learning algorithms. The limitation of MM galaxy morphology classification based on seeing and distance is also presented. We examine various star/galaxy differentiation and galaxy morphology classification techniques commonly used today, and show that our MM techniques compare very favourably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LCST transitions of novel N-isopropylacrylamide ( NIPAM) star polymers, prepared using the four-armed RAFT agent pentaerythritoltetrakis(3-(S-benzyltrithiocarbonyl) propionate) (PTBTP) and their hydrolyzed linear arms were studied using H-1 NMR, PFG-NMR, and DLS. The aim was to determine the effect of polymer architecture and the presence of end groups derived from RAFT agents on the LCST. The LCST transitions of star PNIPAM were significantly depressed by the presence of the hydrophobic star core and possibly the benzyl end groups. The effect was molecular weight dependent and diminished once the number of repeating units per arm >= 70. The linear PNIPAM exhibited an LCST of 35 degrees C, regardless of molecular weight; the presence of both hydrophilic and hydrophobic end groups after hydrolysis from the star core was suggested to cancel effects on the LCST. A significant decrease in R-H was observed below the LCST for star and linear PNIPAM and was attributed to the formation of n-clusters. Application of a scaling law to the linear PNIPAM data indicated the cluster size n = 6. Tethering to the hydrophobic star core appeared to inhibit n-cluster formation in the lowest molecular weight stars; this may be due to enhanced stretching of the polymer chains, or the presence of larger numbers of n-clusters at temperatures below those measured.

Relevância:

20.00% 20.00%

Publicador: