29 resultados para MICROSOMAL-ENZYME INDUCERS
em University of Queensland eSpace - Australia
Resumo:
Echinacea preparations are widely used herbal remedies for the prevention and treatment of colds. In this study we have investigated the metabolism by human liver microsomes of the alkylamide components from an Echinacea preparation as well as that of pure synthetic alkylamides. No significant degradation of alkylamides was evident in cytosolic fractions. Time and NADPH-dependent degradation of alkylamides was observed in microsomal fractions suggesting they are metabolised by cytochrome P450 (P450) enzymes in human liver. There was a difference in the susceptibility of 2-ene and 2,4-diene pure synthetic alkylamides to microsomal degradation with (2E)-N-isobutylundeca-2-ene-8,10-diynamide (1) metabolised to only a tenth the extent of (2E,4E,8Z,IOZ)-N-isobutyldodeca-2,4,8,10-tetracnamide (3) under identical incubation conditions. Markedly less degradation of 3 was evident in the mixture of alkylamides present in an ethanolic Echinacea extract, suggesting that metabolism by liver P450s was dependent both on their chemistry and the combination present in the incubation. Co-incubation of 1 with 3 at equimolar concentrations resulted in a significant decrease in the metabolism of 3 by liver microsomes. This inhibition by 1, which has a terminal alkyne moiety, was found to be time- and concentration-dependent, and due to a mechanism-based inactivation of the P450s. Alkylamide metabolites were detected and found to be the predicted epoxidation, hydroxylation and dealkylation products. These findings suggest that Echinacea may effect the P450-mediated metabolism of other concurrently ingested pharmaceuticals. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Oxidative metabolism of bilirubin (BR) - a breakdown product of haem with cytoprotective and toxic properties - is an important route of detoxification in addition to glucuronidation. The major enzyme(s) involved in this oxidative degradation are not known. In this paper, we present evidence for a major role of the hepatic cytochrome P450 2A5 (Cyp2a5) in BR degradation during cadmium intoxication, where the BR levels are elevated following induction of haem oxygenase-1 (HO-1). Treatment of DBA/2J mice with CdCl2 induced both the Cyp2a5 and HO-1, and increased the microsomal BR degradation activity. By contrast, the total cytochrome P450 (CYP) content and the expression of Cyp1a2 were down-regulated by the treatment. The induction of the HO-1 and Cyp2a5 was substantial at the mRNA, protein and enzyme activity levels. In each case, the up-regulation of HO-1 preceded that of Cyp2a5 with a 5-10 h interval. BR totally inhibited the microsomal Cyp2a5-dependent coumarin hydroxylase activity, with an IC50 approximately equal to the substrate concentration. The 7-methoxyresorufin 7-O-demethylase (MROD) activity, catalyzed mainly by the Cyp1a2, was inhibited up to 36% by BR. The microsomal BR degradation was inhibited by coumarin and a monoclonal antibody against the Cyp2a5 by about 90%. Furthermore, 7-methoxyresorufin, a substrate for the Cyp1a2, inhibited BR degradation activity by approximately 20%. In sum, the results strongly suggest a major role for Cyp2a5 in the oxidative degradation of BR. Secondly, the coordinated up-regulation of the HO-1 and Cyp2a5 during Cd-mediated injury implicates a network of enzyme systems in the maintenance of balancing BR production and elimination.
Resumo:
Rate expression for enzyme poisoning which are consistent with a Michaelis-Menten main reaction are used to analyze the performance of a fixed bed reactor containing immobilized enzyme. When enzyme deactivation results from the irreversible bonding of a product molecule to an existing substrate-enzyme complex, it is shown that minimum enzyme activity can occur in the interior of the bed, well away from the ends. This suggests that bed sectioning techniques may enable direct evaluation of fundamental poisoning mechanisms.
Resumo:
The process of enzyme immobilization under the diffusion-controlled regime (i.e., fast attachment of enzyme compared to its diffusion) is modeled and theoretically solved in this article. Simple and compact solutions for the penetration depth of immobilized enzyme and the bulk enzyme concentration versus time are presented. Furthermore, the conditions for the validity of our solutions are also given in this article so that researchers can discover when the theoretical solutions can be applied to their systems.
Resumo:
It is recognized that vascular dispersion in the liver is a determinant of high first-pass extraction of solutes by that organ. Such dispersion is also required for translation of in-vitro microsomal activity into in-vivo predictions of hepatic extraction for any solute. We therefore investigated the relative dispersion of albumin transit times (CV2) in the livers of adult and weanling rats and in elasmobranch livers. The mean and normalized variance of the hepatic transit time distribution of albumin was estimated using parametric non-linear regression (with a correction for catheter influence) after an impulse (bolus) input of labelled albumin into a single-pass liver perfusion. The mean +/- s.e. of CV2 for albumin determined in each of the liver groups were 0.85 +/- 0.20 (n = 12), 1.48 +/- 0.33 (n = 7) and 0.90 +/- 0.18 (n = 4) for the livers of adult and weanling rats and elasmobranch livers, respectively. These CV2 are comparable with that reported previously for the dog and suggest that the CV2 Of the liver is of a similar order of magnitude irrespective of the age and morphological development of the species. It might, therefore, be justified, in the absence of other information, to predict the hepatic clearances and availabilities of highly extracted solutes by scaling within and between species livers using hepatic elimination models such as the dispersion model with a CV2 of approximately unity.
Resumo:
The genetic mechanisms responsible for the formation of adrenocortical adenomas which autonomously produce aldosterone are largely unknown, The adrenal renin-angiotensin system has been implicated in the pathophysiology of these tumours, Angiotensin-converting enzyme (ACE) catalyses the generation of angiotensin II, and the insertion/deletion (I/D) polymorphism of the ACE gene regulates up to 50% of plasma and cellular ACE variability in humans. We therefore examined the genotypic and allelic frequency distributions of the ACE gene I/D polymorphism in 55 patients with aldosterone-producing adenoma, APA, (angiotensin-unresponsive APA n = 28, angiotensin-responsive APA n = 27), and 80 control subjects with no family history of hypertension, We also compared the ACE gene I/D polymorphism allelic pattern in matched tumour and peripheral blood DNA in the 55 patients with APA, The frequency of the D allele was 0.518 and 0.512 and the I allele was 0.482 and 0.488 in the APA and control subjects respectively, Genotypic and allelic frequency analysis found no significant differences between the groups, Examination of the matched tumour and peripheral blood DNA samples revealed the loss of the insertion allele in four of the 25 patients who were heterozygous for the ACE I/D genotype. The I/D polymorphism of the ACE gene does not appear to contribute to the biochemical and phenotypic characteristics of APA, however, the deletion of the insertion allele of the ACE gene I/D polymorphism in 16% of aldosterone-producing adenomas may represent the loss of a tumour suppressor gene/s or other genes on chromosome 17q which may contribute to tumorigenesis in APA.
Resumo:
The catalytic properties of enzymes are usually evaluated by measuring and analyzing reaction rates. However, analyzing the complete time course can be advantageous because it contains additional information about the properties of the enzyme. Moreover, for systems that are not at steady state, the analysis of time courses is the preferred method. One of the major barriers to the wide application of time courses is that it may be computationally more difficult to extract information from these experiments. Here the basic approach to analyzing time courses is described, together with some examples of the essential computer code to implement these analyses. A general method that can be applied to both steady state and non-steady-state systems is recommended. (C) 2001 academic Press.
Resumo:
Functional significance has been demonstrated in vitro for the exon 3 T-->C Tyr113His amino acid substitution polymorphism of the microsomal epoxide hydrolase (EPHX) gene. The higher activity or fast TT genotype was previously reported to be associated with an increased risk of ovarian cancer, and this association may reflect enhanced activation of endogenous or exogenous substrates to more reactive and mutagenic derivatives. Components of cigarette smoke are examples of exogenous substrates subject to such bioactivation, and smoking exposure may thus modify the risk associated with the EPHX polymorphism. We examined 545 cases of epithelial ovarian cancer and 287 unaffected controls for this EPHXT-C genetic variant to investigate whether, in the Australian population, the TT genotype was associated with (i) specific ovarian tumor characteristics; (ii) risk of ovarian cancer, overall or for specific subgroups; and (iii) risk of ovarian cancer in smokers specifically. Genotyping was carried out using the Perkin-Elmer ABI Prism 7700 Sequence Detection System for fluorogenic polymerase chain reaction allelic discrimination. Stratification of the ovarian cancer cases according to tumor behavior (low malignant potential or invasive), grade, stage, and p53 immunohistochemical status failed to show any heterogeneity with respect to the genotype defined by the EPHX polymorphism. There was a suggestion of heterogeneity with respect to histologic subtype (P= 0.03), largely due to a decreased frequency of the TT genotype in endometrioid tumors. EPHX genotype distribution did not differ significantly between unaffected controls and ovarian cancer cases (overall, low malignant potential, or invasive) either overall or after stratification by smoking status. However, the TT genotype was associated with a decreased risk of invasive ovarian cancer of the endometrioid subtype specifically (age-adjusted odds ratio = 0.38, 95% confidence interval=0.17-0.87). The results suggest that the proposed EPHX-mediated bioactivation of components of cigarette smoke to mutagenic forms is unlikely to be involved in the etiology of ovarian cancer in general but that a greater rate of EPHX-mediated detoxification may decrease the risk of endometrioid ovarian cancer. (C) 2001 Wiley-Liss, Inc.
Resumo:
FAM is a developmentally regulated substrate-specific deubiquitylating enzyme. It binds the cell adhesion and signalling molecules beta -catenin and A-F-6 in vitro, and stabilises both in mammalian cell culture. To determine if FAM is required at the earliest stages of mouse development we examined its expression and function in preimplantation mouse embryos. FAM is expressed at all stages of preimplantation development from ovulation to implantation. Exposure of two-cell embryos to FAM-specific antisense, but not sense, oligodeoxynucleotides resulted in depletion of the FAM protein and failure Of the embryos to develop to blastocysts. Loss of FAM had two physiological effects, namely, a decrease in cleavage rate and an inhibition of cell adhesive events. Depletion of FAM protein was mirrored by a loss of beta -catenin such that very little of either protein remained following 72 h culture. The residual beta -catenin was localised to sites of cell-cell contact suggesting that the cytoplasmic pool of beta -catenin is stabilised by FAM. Although AF-6 levels initially decreased they returned to normal. However, the nascent protein was mislocalised at the apical surface of blastomeres. Therefore FAM is required for preimplantation mouse embryo development and regulates beta -catenin and AF-6 in vivo. (C) 2001 Elsevier Science Ireland Lid. All rights reserved.