3 resultados para MICROCHANNELS

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A volume-of-fluid numerical method is used to predict the dynamics of drop formation in an axi-symmetric microfluidic flow-focusing geometry for a liquid-liquid system. The Reynolds numbers and Weber numbers approximate those of a three-dimensional flow in recently published experiments. We compare the predicted drop formation with the experimental results at various flow rates, and discuss the mechanisms of drop formation in this context. Despite the differences in geometry, we find qualitative correspondence between the numerical and experimental results. Both end-pinching and capillary-wave instability are important for droplet break-up at the higher flow rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric microdrops of low viscosity, elastic fluids have been generated in T-shaped microfluidic devices using a cross-flow shear-induced drop generation process. Dilute (c/c* similar to 0.5) aqueous solutions of polyethylene oxide (PEO) of various molecular weights (3 x 10(5) -2 x 10(6) g/mol) were used as the drop phase fluids whilst silicone oils (5 mPa s