101 resultados para MICROBIAL INFECTION

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nested polymerase chain reaction protocol yielded positive detection of the maternally inherited cytoplasmic proteobacterium Wolbachia in total genomic DNA from coffee berry borers collected in Benin, Brazil, Colombia, Ecuador, El Salvador, Honduras, India, Kenya, Mexico, Nicaragua, and Uganda. Wolbachia was not detected in specimens from Cameroon, the Dominican Republic, Indonesia, Jamaica, and Peru. Amplified bands from India and Brazil were cloned and sequenced. The 438-bp sequence clearly conformed to Wolbachia group B and was nearly identical to that of Ephestia kuehniella. The possible implications of Wolbachia infection in the coffee berry borer are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drosophila simulans strains infected with three different Wolbachia strains were generated by experimental injection of a third symbiont into a naturally double-infected strain. This transfer led to a substantial increase in total Wolbachia density in the host strain. Each of the three symbionts was stably transmitted in the presence of the other two. Triple-infected males were incompatible with double-infected females. No evidence was obtained for interference between modification effects of the different Wolbachia strains in males. Some incompatibility was observed between triple-infected males and females. However, this incompatibility reaction is not a specific property of triple-infected flies, because it was also observed in double-infected strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional vaccines consisting of whole attenuated micro-organisms. or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection. adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity. and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic. and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system. incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore. mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burn sepsis is a leading cause of mortality and morbidity in patients with major burns. The use of topical anti-microbial agents has helped improve the survival in these patients. There are a number of anti-microbials available, one of which, Silvazine(TM) (1% silver sulphadiazine (SSD) and 0.2% chlorhexidine digluconate), is used only in Australasia. No study, in vitro or clinical, had compared Silvazine(TM) with the new dressing Acticoat(TM). This study compared the anti-microbial activity of Silvazine(TM), Acticoa(TM) and 1% silver sulphadiazine (Flamazine(TM)) against eight common burn wound pathogens. Methods: Each organism was prepared as a suspension. A 10 mul inoculum of the chosen bacterial isolate (representing approximately between 104 and 105 total bacteria) was added to each of four vials, followed by samples of each dressing and a control. The broths were then incubated and 10 mul loops removed at specified intervals and transferred onto Horse Blood Agar. These plates were then incubated for 18 hours and a colony count was performed. Results: The data demonstrates that the combination of 1% SSD and 0.2% chlorhexidine digluconate (Silvazine(TM)) results in the most effective killing of all bacteria. SSD and Acticoat(TM) had similar efficacies against a number of isolates, but Acticoat(TM) seemed only bacteriostatic against E. faecalis and methicillin-resistant Staphylococcus aureus. Viable quantities of Enterobacter cloacae and Proteus mirabilis rei named at 24 h. Conclusion: The combination of 1% SSD and 0.2% chlorhexidine digluconate (Silvazine(TM)) is a more effective anti-microbial against a number of burn wound pathogens in this in vitro study. A clinical study of its in vivo anti-microbial efficacy is required. (C) 2003 Elsevier Ltd and ISBI. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wolbachia pipientis is a vertically transmitted, obligate intracellular symbiont of arthropods. The bacterium is best known for its ability to manipulate host reproductive biology where it can induce cytoplasmic incompatibility, parthenogenesis, feminization and male-killing. In addition to the various reproductive phenotypes it generates through interaction with host reproductive tissue it is also known to infect somatic tissues. However, relatively little is known about the consequences of infection of these tissues with the exception that in some hosts Wolbachia acts as a classical mutualist and in others a pathogen, dramatically shortening adult insect lifespan. Manipulation experiments have demonstrated that the severity of Wolbachia-induced effects on the host is determined by a combination of host genotype, Wolbachia strain, host tissue localization, and interaction with the environment. The recent completion of the whole genome sequence of Wolbachia pipientis wMel strain indicates that it is likely to use a type IV secretion system to establish and maintain infection in its host. Moreover, an unusual abundance of genes encoding proteins with eukaryotic-like ankyrin repeat domains suggest a function in the various described phenotypic effects in hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymerase chain reaction screening revealed that Armigeres subalbatus (Coquillett), a vector of filariasis, was infected with the intracellular bacteria Wolbachia. Laboratory crosses between infected males and uninfected females resulted in less than half the number of offspring than control crosses between uninfected individuals when young (2- to 3-d-old) males were used in the cross. However, incompatibility was lost when old (14- to 17-d-old) males were used. Field-collected females did not show detectable cytoplasmic incompatibility, and this may be because of the age at which males mate in the field. We used head pigment fluorescence levels to age field males collected from mating swarms, and found that 25-63% of swarming males were older than 13 d. Male age may be one factor influencing the observed low levels of cytoplasmic incompatibility detected in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular bacteria of the genus Wolbachia were first discovered in mosquitoes in the 1920s. Their superficial similarity to pathogenic rickettsia initially raised interest in them as potential human pathogens. However, injection experiments with mice showed that they were non-pathogenic, and they were subsequently classified as symbionts of insects. Until the 1970s, Wolbachia was considered to infect a limited number of species of mosquitoes. It is now clear that Wolbachia is an extremely common intracellular agent of invertebrates, infecting nearly all the major groups of arthropods and other terrestrial invertebrates. Its wide host range and abundance can be attributed partly to the unusual phenotypes it exerts on the host it infects. These include the induction of parthenogenesis (the production of female offspring from unmated mothers) in certain insects, the feminization of genetic male crustaceans to functional phenotypic females, and the failure of fertilization in hosts when males and females have a different infection status (cytoplasmic incompatibility). All of these phenotypes favor maternal transmission of the intracellular Wolbachia. In the last year, Wolbachia has also been shown to be a widespread symbiont of filarial nematodes. It appears that Wolbachia is needed by the adult worm for normal fertility, indicating that Wolbachia is behaving like a classic mutualist in this case. This discovery exemplifies that the extent of the host range of Wolbachia and its associated phenotypes is still far from fully understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytoplasmic incompatibility (CI) in Drosophila simulans is related to infection of the germ line by a rickettsial endosymbiont (genus Wolbachia). Wolbachia were transferred by microinjection of egg cytoplasm into uninfected eggs of both D. simulans and D. melanogaster to generate infected populations. Transinfected strains of D. melanogaster with lower densities of Wolbachia than the naturally infected D. simulans strain did not express high levels of CI. However, transinfected D. melanogaster egg cytoplasm, transferred back into D. simulans, generated infected populations that expressed CI at levels near those of the naturally infected strain. A transinfected D. melanogaster line selected for increased levels of CI expression also displayed increased symbiont densities. These data suggest that a threshold level of infection is required for normal expression of CI and that host factors help determine the density of the symbiont in the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dental profession has possessed traditional standards of cross-infection control but the recent expression of real concerns by both the public and the profession over the transmissibility of infectious diseases in the dental surgery has demanded a formalized and extended approach to teaching cross-infection control in the dental curriculum. Clear curriculum content must be formulated within contemporary Workplace Health and Safety Guidelines and the Strategic Plan of the Dental School or academic health centre. The full integration demands that the area is taught as a discrete entity but recognized as an intrinsic part of each clinical encounter. This paper discusses the structure and integration of cross-infection control into the curriculum at the University of Queensland Dental School.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tensions produced in the wall of a rigid, thin-walled, liquid-filled sphere as it moves with an axisymmetric straining flow are examined. This problem has not been previously addressed. A generalised correlation for the maximum wall tension, expressed in dimensionless form as a Weber number (We), is developed in terms of the acceleration number (Ac) and Reynolds number (Re) of the straining flow. At low Reynolds number We is dominated by viscous forces, while inertial forces due to internal pressure gradients caused by sphere acceleration dominate at higher Re. The generalised correlation has been used to examine the case of a typical yeast cell (a thin-walled, liquid-filled sphere) passing through a typical high-pressure homogeniser (a straining-flow device). At 56 MPa homogenising pressure, a 6 mu m yeast cell experiences tensions in the inertially dominated regime (Re = 100). The correlation gives We = 0.206, corresponding to a maximum wall tension of 8 Nm(-1). This is equivalent to an applied compressive force of 150 mu N and compares favourably with the force required to break yeast cells under compressive micromanipulation (40-90 mu N). Inertial forces may therefore be an important and previously unrecognised. mechanism of microbial cell disruption during high-pressure homogenisation. Further work is required to examine the likelihood of cell deformation in the high-strain-rate short-residence-time environment of the homogeniser, and the effect that such deformation may have on the contribution of inertial forces to disruption. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.