7 resultados para MICROALLOYED AUSTENITE
em University of Queensland eSpace - Australia
Resumo:
Kikuchi diffraction was used to accurately determine the orientation relationship (OR) between Mg17Al12 precipitates and matrix in an AZ91D alloy. For both continuous and discontinuous precipitations, the Burgers OR and the Potter OR were equally observed. The lattice parameter of Mg17Al12 associated with the former is bigger than that of the latter. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Orientation relationships between Mg24Y5 precipitates and matrix in a Mg-Y alloy were accurately determined using Kikuchi line diffraction. The Burgers relationship with habit planes of {10 (1) over bar0}(H) and {31 (4) over bar0}(H) were observed for all precipitates. Compared with the Mg17Al12 precipitate in AZ91, the precipitation hardening effect in this alloy was significantly increased. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The orientation relationship (OR) between the beta(Zn) phase and the alpha(Al) phase and the corresponding habit planes in a Zn-Al eutectoid alloy were accurately determined using convergent beam Kikuchi line diffraction patterns. In addition to the previously reported OR. [11 (2) over bar0](beta)parallel to[110](alpha), (0002)(beta)parallel to ((1) over bar 11)alpha, two new ORs were observed. They are: [11 (2) over bar0](beta)parallel to [110], ((1) over bar 101)(beta) 0.82 degrees from (002)(alpha) and [(1) over bar 100](beta)parallel to[112](alpha), (0002)(beta) 4.5 degrees from (111)(alpha). These ORs can be explained and understood using the recently developed edge-to-edge matching model. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is [GRAPHICS] However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 degrees of (221)(A) or of (259)(A). The latter only corresponds with a habit plane that is within 5 degrees of (259)(A). The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/- 0.5 degrees in lath martensite in an Fe-20 wt.% Ni-6 wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19 wt.% Ni-3.5 wt.% Mn-0.15 wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In order to understand the metallurgical influences on Rock Bolt SCC, an evaluation has been carried out on carbon, carbon + manganese, alloy and microalloyed steels subjected to the conditions previously identified as producing laboratory SCC similar to that observed for rock bolts in service. The approach has been to use the LIST test (Linearly increasing stress test) for samples exposed to a dilute pH 2.1-sulphate solution, as per our prior studies. SCC was evaluated from the decrease in tensile strength, ductility and fractography as revealed by SEM observation. A range of SCC susceptibilities was observed. Ten of these steels showed SCC, however there was no SCC for one carbon, two carbon + manganese and two alloy steels.