4 resultados para MESOSTIGMATA

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predatory mites (Acari: Mesostigmata) on tree trunks without significant epiphytic growth in a subtropical rainforest in Eastern Australia were assessed for habitat specificity (i.e. whether they are tree trunk specialists or occupying other habitats) and the influence of host tree and bark structure on their abundance, species richness and species composition. The trunks of nine tree species from eight plant families representing smooth, intermediate and rough bark textures were sampled using a knockdown insecticide spray. In total, 12 species or morphospecies of Mesostigmata (excluding Uropodina sensu stricto) were collected, most of which are undescribed. Comparison with collections from other habitats indicates that epicorticolous Mesostigmata are mainly represented by suspended soil dwellers (six species), secondarily by generalists (four species) and a bark specialist (one species). A typical ground-dwelling species was also found but was represented only by a single individual. In terms of abundance, 50.5% of individuals were suspended soil dwellers, 40.7% bark specialists, and 8.3% generalists. Host species and bark roughness had no significant effect on abundance or species richness. Furthermore, there was no clear effect on species composition. The distribution of the most frequently encountered species suggests that most mesostigmatid mites living on bark use many or most rainforest tree species, independent of bark roughness. These findings support the hypothesis that some epicorticolous Mesostigmata use tree trunks as 'highways' for dispersing between habitat patches, while others use it as a permanent habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We inferred phylogeny among the three major lineages of the Acari ( mites) from the small subunit rRNA gene. Our phylogeny indicates that the Opilioacariformes is the sister-group to the Ixodida+Holothyrida, not the Ixodida+Mesostigmata+Holothyrida, as previously thought. Support for this relationship increased when sites with the highest rates of nucleotide substitution, and thus the greatest potential for saturation with nucleotide substitutions, were removed. Indeed, the increase in support ( and resolution) was despite a 70% reduction in the number of parsimony-informative sites from 408 to 115. This shows that rather than 'noisy' sites having no impact on resolution of deep branches, 'noisy' sites have the potential to obscure phylogenetic relationships. The arrangement, Ixodida+Holothyrida+Opilioacariformes, however, may be an artefact of long-branch attraction since relative-rate tests showed that the Mesostigmata have significantly faster rates of nucleotide substitution than other parasitiform mites. Thus, the fast rates of nucleotide substitution of the Mesostigmata might have caused the Mesostigmata to be attracted to the outgroup in our trees. We tested the hypothesis that the high rate of nucleotide substitution in some mites was related to their short generation times. The Acari species that have high nucleotide substitution rates usually have short generation times; these mites also tend to be more active and thus have higher metabolic rates than other mites. Therefore, more than one factor may affect the rate of nucleotide substitution in these mites.