18 resultados para MEDULLARY DORSAL-HORN

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Between 1085 and 1927, epidemics of convulsive ergotism were widespread east of the Rhine in Europe due to consumption of grain contaminated with ergot, which is produced by the fungus Claviceps purpurea. West of the Rhine, consumption of ergot-contaminated food caused epidemics of gangrenous ergotism. The clinical features of convulsive ergotism-muscle twitching and spasms, changes in mental state, hallucinations, sweating, and fever lasting for several weeks-suggest serotonergic overstimulation of the CNS (ie, the serotonin syndrome). The ergot alkaloids are serotonin agonists. Dihydroergotamine binds to serotonin receptors in the dorsal horn of the spinal cord, which is the site of neuropathological changes in convulsive ergotism. Dihydroergotamine given to human beings can cause the serotonin syndrome. Ergots produced by different strains of Claviceps purpurea, and those growing in different soils, may have different ergot alkaloid compositions. An alkaloid, present in high concentrations in ergots from east of the Rhine, may have caused convulsive ergotism at a circulating concentration insufficient to produce peripheral ischaemia. The serotonin syndrome may, therefore, have been a public-health problem long before it was recognised as a complication of modem psychopharmacology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although glycine receptor Cl- channels (GlyRs) have long been known to mediate inhibitory neurotransmission onto spinal nociceptive neurons, their therapeutic potential for peripheral analgesia has received little attention. However, it has been shown that alpha 3-subunit-containing GlyRs are concentrated into regions of the spinal cord dorsal horn where nociceptive afferents terminate. Furthermore, inflammatory mediators specifically inhibit alpha 3-containing GlyRs, and deletion of the murine alpha 3 gene confers insensitivity to chronic inflammatory pain. This strongly implicates GlyRs in the inflammation-mediated disinhibition of centrally projecting nociceptive neurons. Future therapies aimed at specifically increasing current flux through alpha 3-containing GlyRs may prove effective in providing analgesia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the nature of vasodilator mechanisms in the dorsal aorta of the giant shovelnose ray, Rhinobatus typus. Anatomical techniques found no evidence for an endothelial nitric oxide synthase, but neural nitric oxide synthase was found to be present in the perivascular nerve fibres of the dorsal aorta and other arteries and veins using both NADPH-diaphorase staining and immunohistochemistry with a specific neural NOS antibody. Arteries and veins both contained large nNOS-positive nerve trunks from which smaller nNOS-positive bundles branched and formed a plexus in the vessel wall. Single, varicose nNOS-positive nerve fibres were present in both arteries and veins. Within the large bundles of both arteries and veins, groups of nNOS-positive cell bodies forming microganglia were observed. Double-labelling immunohistochemistry using an antibody to tyrosine hydroxylase showed that nearly all the NOS nerves were not sympathetic. Acetylcholine always caused constriction of isolated rings of the dorsal aorta and the nitric oxide donor, sodium nitroprusside, did not mediate any dilation. Addition of nicotine (3 x 10(-4) M) to preconstricted rings caused a vasodilation that was not affected by the nitric oxide synthase inhibitor, L-NNA (10(-4) M), nor the soluble guanylyl cyclase inhibitor, ODQ (10(-5) M). This nicotine-mediated vasodilation was, therefore, not due to the synthesis and release of NO. Disruption of the endothelium significantly reduced or eliminated the nicotine-mediated vasodilation. In addition. indomethacin (10(-5) M), an inhibitor of cyclooxygenases, significantly increased the time period to maximal dilation and reduced, but did not completely inhibit the nicotine-mediated vasodilation. These data support the hypothesis that a prostaglandin is released from the vascular endothelium of a batoid ray, as has been described previously in other groups of fishes. The function of the nitrergic innervation of the blood vessels is not known because nitric oxide does not appear to regulate vascular tone. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN. (C) 2004 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medullary breast cancer (MBC) is a rare, diagnostically difficult, pathological subtype. Despite being high grade, it has a good prognosis. MBC patients have an excess of BRCA1 germ-fine mutation and reliable identification of MBC could help to identify patients at risk of carrying germline BRCA1 mutations or in whom chemotherapy could be avoided. The aim of this study was therefore to improve diagnosis by establishing an MBC protein expression profile using immunohistochemistry (IHC) on tissue-microarrays (TMA). Using a series of 779 breast carcinomas ('EC' set), diagnosed initially as MBC, a double-reading session was carried out by several pathologists on all of the histological material to establish the diagnosis as firmly as possible using a 'medullary score'. Only MBCs with high scores, i.e. typical MBC (TMBC) (n = 44) and non-TMBC grade III with no or low scores (n = 160), were included in the IHC study. To validate the results obtained on this first set, a control series of TMBC (n = 17) and non-MBC grade III cases (n = 140) ('IPC' set) was studied. The expression of 18 proteins was studied in the 61 TMBCs and 300 grade III cases from the two sets. The global intra-observer concordance of the first reading for the diagnosis of TMBC was 94%, with almost perfect kappa (kappa) of 0.815. TMBC was characterized by a high degree of basal/myoepithelial differentiation. In multivariate analysis with logistic regression, TMBC was defined by the association of P-cadherin (R = 2.29), MIB1 > 50 (R = 3.80), ERBB2 negativity (R = 2.24) and p53 positivity (RR = 1.45). Copyright (c) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested current hypotheses on the functional organization of the third visual complex, a particularly controversial region of the primate extrastriate cortex. In anatomical experiments, injections of retrograde tracers were placed in the dorsal cortex immediately rostral to the second visual area (V2) of New World monkeys (Callithrix jacchus), revealing the topography of interconnections between the third tier cortex and the primary visual area (V1). The data indicate the presence of a dorsomedial area (DM), which represents the entire upper and lower quadrants of the visual field, and which receives strong, topographically organized projections from the superficial layers of V1. The visuotopic organization and boundaries of DM were confirmed by electrophysiological recordings in the same animals and by architectural characteristics which were distinct from those found in ventral extrastriate cortex rostral to V2. There was no electrophysiological or histological evidence for a transitional area between V2 and DM. In particular, the central representation of the upper quadrant in DM was directly adjacent to the representation of the horizontal meridian that marks the rostral border of V2. The present results argue in favor of the hypothesis that the third visual complex in New World monkeys contains different areas in its dorsal and ventral components: area DM, near the dorsal midline, and a homolog of area 19 of other mammals, located more lateral and ventrally. The characteristics of DM suggest that it may correspond to visual area 6 (V6) of Old World monkeys. (C) 2005 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador: