11 resultados para MEDIATED GROWTH

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interactions between Eph receptor tyrosine kinases and their ephrin ligands regulate cell migration and axon pathfinding. The EphA receptors are generally thought to become activated by ephrin-A ligands, whereas the EphB receptors interact with ephrin-B ligands. Here we show that two of the most widely studied of these molecules, EphB2 and ephrin-A5, which have never been described to interact with each other, do in fact bind one another with high affinity. Exposure of EphB2-expressing cells to ephrin-A5 leads to receptor clustering, autophosphorylation and initiation of downstream signaling. Ephrin-A5 induces EphB2-mediated growth cone collapse and neurite retraction in a model system. We further show, using X-ray crystallography, that the ephrin-A5-EphB2 complex is a heterodimer and is architecturally distinct from the tetrameric EphB2-ephrin-B2 structure. The structural data reveal the molecular basis for EphB2-ephrin-A5 signaling and provide a framework for understanding the complexities of functional interactions and crosstalk between A- and B-subclass Eph receptors and ephrins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although there is good evidence that immunity to the blood stages of malaria parasites can be mediated by different effector components of the adaptive immune system, target antigens for a principal component, effector CD4(+) T cells, have never been defined. We generated CD4+ T cell lines to fractions of native antigens from the blood stages of the rodent parasite, Plasmodium yoelii, and identified fraction-specific T cells that had a Th1 phenotype (producing IL-2, IFN-gamma, and tumor necrosis factor-a, but not IL-4, after antigenic stimulation). These T cells could inhibit parasite growth in recipient severe combined immunodeficient mice. N-terminal sequencing of the fraction showed identity with hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT). Recombinant HGXPRT from the human malaria parasite, Plasmodium falciparum, activated the T cells in vitro, and immunization of normal mice with recombinant HGXPRT reduced parasite growth rates in all mice after challenge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mitogen-activated protein ( MAP) kinases contribute to altered cell growth and function in a variety of disease states. However, their role in the endothelial complications of diabetes mellitus remains unclear. Human endothelial cells were exposed for 72 h to 5 mM ( control) or 25 mM ( high) glucose or 5 mM glucose plus 20 mM mannitol ( osmotic control). The roles of p38 and p42/44 MAP kinases in the high glucose-induced growth effects were determined by assessment of phosphorylated MAP kinases and their downstream activators by Western blot and by pharmacological inhibition of these MAP kinases. Results were expressed as a percentage ( means +/- SE) of control. High glucose increased the activity of total and phosphorylated p38 MAP kinase ( P < 0.001) and p42/44 MAP kinase ( P < 0.001). Coexposure of p38 MAP kinase blocker with high glucose reversed the antiproliferative but not the hypertrophic effects associated with high-glucose conditions. Transforming growth factor (TGF)-beta1 increased the levels of phosphorylated p38 MAP kinase, and p38 MAP kinase blockade reversed the antiproliferative effects of this cytokine. The high glucose-induced increase in phosphorylated p38 MAP kinase was reversed in the presence of TGF-beta1 neutralizing antibody. Although hyperosmolarity also induced antiproliferation (P < 0.0001) and cell hypertrophy (P < 0.05), there was no change in p38 activity, and therefore inhibition of p38 MAP kinase had no influence on these growth responses. Blockade of p42/44 MAP kinase had no effect on the changes in endothelial cell growth induced by either high glucose or hyperosmolarity. High glucose increased p42/44 and p38 MAP kinase activity in human endothelial cells, but only p38 MAP kinase mediated the antiproliferative growth response through the effects of autocrine TGF-beta1. High glucose-induced endothelial cell hypertrophy was independent of activation of the MAP kinases studied. In addition, these effects were independent of any increase in osmolarity associated with high-glucose exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endoparasitoid insects introduce maternal factors into the body of their host at oviposition to suppress cellular defences for the protection of the developing parasitoid. We have shown that transient expression of polydnavirus genes from a hymenopteran parasitoid Cotesia rubecula (CrPDV) is responsible for the inactivation of hemocytes from the lepidopteran host Pieris rapae. Since the observed downregulation of CrPDV genes in infected host tissues is not due to cis-regulatory elements at the CrV1 gene locus, we speculated that the termination of CrPDV gene expression may be due to cellular inactivation caused by the CrV1-mediated immune suppression of infected tissues. To test this assumption, we isolated an imaginal disc growth factor (IDGF) that is expressed in fat body and hemocytes, the target of viral infection and expression of CrPDV genes. Time-course experiments showed that the level of P. rapae IDGF is not affected by parasitization and polydnavirus infection. However, the amount of highly expressed genes, such as storage proteins, arylphorin and lipophorin, are significantly reduced following parasitization. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocular neovascularisation is the leading cause of blindness in developed countries and the most potent angiogenic factor associated with neovascularisation is vascular endothelial growth factor (VEGF). We have previously described a sense oligonucleotide (ODN-1) that possesses anti-human and rat VEGF activity. This paper describes the synthesis of lipid-lysine dendrimers and their subsequent ability to delivery ODN-1 to its target and mediate a reduction in VEGF concentration both in vitro and in vivo. Positively charged dendrimers were used to deliver ODN-1 into the nucleus of cultured D407 cells. The effects on VEGF mRNA transcription and protein expression were analysed using RT-PCR and ELISA, respectively. The most effective dendrimers in vitro were further investigated in vivo using an animal model of choroidal neovascularisation (CNV). All dendrimer/ODN-1 complexes mediated in a significant reduction in VEGF expression during an initial 24 hr period (40-60%). Several complexes maintained this level of VEGF reduction during a subsequent, second 24 hr period, which indicated protection of ODN-1 from the effects of endogenous nucleases. In addition, the transfection efficiency of dendrimers that possessed 8 positive charges (chi = 81(.)51%) was significantly better (P = 0(.)0036) than those that possessed 4 positive charges (chi = 56(.)8%). RT-PCR revealed a correlation between levels of VEGF protein mRNA. These results indicated that the most effective structural combination was three branched chains of intermediate length with 8 positive charges such as that found for dendrimer 4. Dendrimer 4 and 7/ODN-1 complexes were subsequently chosen for in vivo analysis. Fluorescein angiography demonstrated that both dendrimers significantly (P < 0(.)0001) reduced the severity of laser mediated CNV for up to two months post-injection. This study demonstrated that lipophilic, charged dendrimer mediated delivery of ODN-1 resulted in the down-regulation of in vitro VEGF expression. In addition, in vivo delivery of ODN-1 by two of the dendrimers resulted in significant inhibition of CNV in an inducible rat model. Time course studies showed that the dendrimer/ODN-1 complexes remained active for up to two months indicating the dendrimer compounds provided protection against the effects of nucleases. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is one of the major mediators of retinal ischemia-associated neovascularization. We have shown here that adeno-associated virus (AAV)-mediated expression of sFIt-1, a soluble form of the Flt-1 VEGF receptor, was maintained for up to 8 and 17 months postinjection in mice and in monkeys, respectively. The expression of sFIt-1 was associated with the long-term (8 months) regression of neovascular vessels in 85% of trVEGF029 eyes. In addition, it resulted in the maintenance of retinal morphology, as the majority of the treated trVEGF029 eyes (75%) retained high numbers of photoreceptors, and in retinal function as measured by electroretinography. AAV-mediated expression of sFIt-1 prevented the development of laser photocoagulation-incluced choroidal neovascularization in all treated monkey eyes. There were no clinically or histologically detectable signs of toxicity present in either animal model following AAV.sFlt injection. These results suggest that AAV-mediated secretion gene therapy could be considered for treatment of retinal and choroidal neovascularizations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested the phenotypic responses of larval striped marsh frogs (Limnodynastes peronii) to the odonate nymph predator, Aeshna brevistyla. When reared in the presence of dragonfly nymphs feeding upon conspecifics of L. peronii larvae the tadpoles showed a strong change in morphology. Morphological changes included an increase in total tail height, but also an unexpected marked change in head-body shape. In addition, we examined how tadpole development, as well as mass and length at metamorphosis, was affected by exposure to dragonfly nymphs. Larval development of L. peronii was strongly influenced by exposure to the predatory behaviour of dragonfly nymphs. Predator-induced tadpoles had significantly slower developmental rates than control larvae. Although metamorphs of non-exposed L. peronii were approximately 33% lighter than predator-exposed metamorphs and possessed lower jump distances, after adjusting for mass there was no difference in jump distance. The newly described morphological response may assist in more accurately relating morphological plasticity to fitness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists are increasingly used in patients with diabetes, and small studies have suggested a beneficial effect on renal function, but their effects on. extracellular matrix (ECM) turnover are unknown. The aims of this study were to investigate the effects of the PPAR-gamma agonist pioglitazone on growth and matrix production in human cortical fibroblasts (CF). Cell growth and ECM production and turnover were measured in human CF in the presence and absence of 1 and 3 muM pioglitazone. Exposure of CF to pioglitazone caused an antiproliferative (P < 0.0001) and hypertrophic (P < 0.0001) effect; reduced type IV collagen secretion (P < 0.01), fibronectin secretion (P < 0.0001), and proline incorporation (P < 0.0001); decreased MMP-9 activity (P < 0.05); and reduced tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 secretion (P < 0.001 and P < 0.0001, respectively). These effects were independent of TGF-beta1. A reduction in ECM production was similarly observed when CF were exposed to a selective PPAR-gamma agonist (L-805645) in concentrations that caused no toxicity, confirming the antifibrotic effects of pioglitazone were mediated through a PPAR-gamma-dependent mechanism. Exposure of CF to high glucose conditions induced an increase in the expression of collagen IV (P < 0.05), which was reversed both in the presence of pioglitazone (1 and 3 muM) and by L-805645. In summary, exposure of human CIF to pioglitazone causes an antiproliferative effect and reduces ECM production through mechanisms that include reducing TIMP activity, independent of TGF-beta1. These studies suggest that the PPAR-gamma agonists may have a specific role in ameliorating the course of progressive tubulointerstitial fibrosis under both normoglycemic and hyperglycemic states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most studies on kidney development have considered the interaction of the metanephric mesenchyme and the ureteric bud to be the major inductive event that maintains tubular differentiation and branching morphogenesis. The mesenchyme produces Gdnf, which stimulates branching, and the ureteric bud stimulates continued growth of the mesenchyme and differentiation of nephrons from the induced mesenchyme. Null mutation of the Wt1 gene eliminates outgrowth of the ureteric bud, but Gdnf has been identified as a target of Pax2, but not of Wt1. Using a novel system for microinjecting and electroporating plasmid expression constructs into murine organ cultures, it has been demonstrated that Vegfa expression in the mesenchyme is regulated by Wt1. Previous studies had identified a population of Flk1-expressing cells in the periphery of the induced mesenchyme, and adjacent to the stalk of the ureteric bud, and that Vegfa was able to stimulate growth of kidneys in organ culture. Here it is demonstrated that signaling through Flk1 is required to maintain expression of Pax2 in the mesenchyme of the early kidney, and for Pax2 to stimulate expression of Gdnf. However, once Gdnf stimulates branching of the ureteric bud, the Flk1-dependent angioblast signal is no longer required to maintain branching morphogenesis and induction of nephrons. Thus, this work demonstrates the presence of a second set of inductive events, involving the mesenchymal and angioblast populations, whereby Wt1-stimulated expression of Vegfa elicits an as-yet-unidentified signal from the angioblasts, which is required to stimulate the expression of Pax2 and Gdnf, which in turn elicits an inductive signal from the ureteric bud.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we describe optimization of polyethylenimine (PEI)-mediated transient production of recombinant protein by CHO cells by facile manipulation of a chemically defined culture environment to limit accumulation of nonproductive cell biomass, increase the duration of recombinant protein production from transfected plasmid DNA, and increase cell-specific production. The optimal conditions for transient transfection of suspension-adapted CHO cells using branched, 25 kDa PEI as a gene delivery vehicle were experimentally determined by production of secreted alkaline phosphatase reporter in static cultures and recombinant IgG(4) monoclonal antibody (Mab) production in agitated shake flask cultures to be a DNA concentration of 1.25 mu g 10(6) cells(-1) mL(-1) at a PEI nitrogen: DNA phosphate ratio of 20:1. These conditions represented the optimal compromise between PEI cytotoxicity and product yield with most efficient recombinant DNA utilization. Separately, both addition of recombinant insulin-like growth factor (LR3-IGF) and a reduction in culture temperature to 32 degrees C were found to increase product titer 2- and 3-fold, respectively. However, mild hypothermia and LR3-IGF acted synergistically to increase product titer 11-fold. Although increased product titer in the presence of LR3-IGF alone was solely a consequence of increased culture duration, a reduction in culture temperature post-transfection increased both the integral of viable cell concentration (IVC) and cell-specific Mab production rate. For cultures maintained at 32 degrees C in the presence of LR3-IGF, IVC and qMab were increased 4- and 2.5-fold, respectively. To further increase product yield from transfected DNA, the duration of transgene expression in cell populations maintained at 32 C in the presence of LR3-IGF was doubled by periodic resuspension of transfected cells in fresh media, leading to a 3-fold increase in accumulated Mab titer from similar to 13 to similar to 39 mg L-1. Under these conditions, Mab glycosylation at Asn297 remained essentially constant and similar to that of the same Mab produced by stably transfected GS-CHO cells. From these data we suggest that the efficiency of transient production processes (protein output per rDNA input) can be significantly improved using a combination of mild hypothermia and growth factor(s) to yield an extended activated hypothermic synthesis.