3 resultados para MDR
em University of Queensland eSpace - Australia
Resumo:
In 2000/2001 an outbreak of multi-drug resistant Acinetobacter bauntannii (MDR-AB) susceptible only to amikacin and tobramycin occurred in the intensive care unit (leU) of a general public adult hospital in Brisbane, Australia. Over a 2 year period, a total of 32 new isolates were identified; in all cases, the isolates were considered to be colonising rather than infecting agents. No environmental or other source could be identified. A combination of infection control measures and antibiotic restriction contributed to the eradication of this organism from the leu.
Resumo:
Verapamil inhibits tri-iodothyronine (T-3) efflux from several cell types, suggesting the involvement of multidrug resistance-associated (MDR) proteins in T-3 transport. The direct involvement of P-glycoprotein (P-gp) has not, however, been investigated. We compared the transport of I-125-T-3 in MDCKII cells that had been transfected with mdr1 cDNA (MDCKII-MDR) versus wild-type MDCKII cells (MDCKII), and examined the effect of conventional (verapamil and nitrendipine) and specific MDR inhibitors (VX 853 and VX 710) on I-125-T-3 efflux. We confirmed by Western blotting the enhanced expression of P-gp in MDCKII-MDR cells. The calculated rate of I-125-T-3 efflux from MDCKII-MDR cells (around 0.30/min) was increased twofold compared with MDCKII cells (around 0.15/min). Overall, cellular accumulation of I-125-T-3 was reduced by 26% in MDCKII-MDR cells compared with MDCKII cells, probably reflecting enhanced export of T-3 from MDCKII-MDR cells rather than reduced cellular uptake, as P-gp typically exports substances from cells. Verapamil lowered the rate of I-125-T-3 efflux from both MDCKII and MDCKII-MDR cells by 42% and 66% respectively, while nitrendipine reduced I-125-T-3 efflux rate by 36% and 48% respectively, suggesting that both substances inhibited other cellular T-3 transporters in addition to P-gp. The specific MDR inhibitors VX 853 and VX 710 had no effect of I-125-T-3 efflux rate from wild-type MDCKII cells but reduced I-125-T-3 export in MDCKII-MDR cells by 50% and 53% respectively. These results have provided the first direct evidence that P-gp exports thyroid hormone from cells.
Long-term persistence of multi-drug-resistant Salmonella enterica serovar Newport in two dairy herds
Resumo:
Objective - To evaluate the association between maintaining joint hospital and maternity pens;and persistence of multi-drug-resistant (MDR) Salmonella enterica serovar Newport on 2 dairy farms. Design - Observational study. Sample Population - Feces and environmental samples from 2 dairy herds. Procedure - Herds were monitored for fecal shedding of S enterica Newport after outbreaks of clinical disease. Fecal and environmental samples were collected approximately monthly from pens housing sick cows and calving cows and from pens containing lactating cows. Cattle shedding the organism were tested serially on subsequent visits to determine carrier status. One farm was resampled after initiation of interventional procedures, including separation of hospital and maternity pens. Isolates were characterized via serotyping, determination of antimicrobial resistance phenotype, detection of the CMY-2 gene, and DNA fingerprinting. Results - The prevalence (32.4% and 33.3% on farms A and B, respectively) of isolating Salmonella from samples from joint hospital-maternity pens was significantly higher than the prevalence in samples from pens housing preparturient cows (0.8%, both farms) and postparturient cows on Farm B (8.8%). Multi-drug-resistant Salmonella Newport was isolated in high numbers from bedding material, feed refusals, lagoon slurry, and milk filters. One cow excreted the organism for 190 days. Interventional procedures yielded significant reductions in the prevalences of isolating the organism from fecal and environmental samples. Most isolates were of the C2 serogroup and were resistant to third-generation cephalosporins. Conclusions and Clinical Relevance - Management practices may be effective at reducing the persistence of MDR Salmonella spp in dairy herds, thus mitigating animal and public health risk.