2 resultados para MAP KINASES
em University of Queensland eSpace - Australia
Resumo:
The mitogen-activated protein ( MAP) kinases contribute to altered cell growth and function in a variety of disease states. However, their role in the endothelial complications of diabetes mellitus remains unclear. Human endothelial cells were exposed for 72 h to 5 mM ( control) or 25 mM ( high) glucose or 5 mM glucose plus 20 mM mannitol ( osmotic control). The roles of p38 and p42/44 MAP kinases in the high glucose-induced growth effects were determined by assessment of phosphorylated MAP kinases and their downstream activators by Western blot and by pharmacological inhibition of these MAP kinases. Results were expressed as a percentage ( means +/- SE) of control. High glucose increased the activity of total and phosphorylated p38 MAP kinase ( P < 0.001) and p42/44 MAP kinase ( P < 0.001). Coexposure of p38 MAP kinase blocker with high glucose reversed the antiproliferative but not the hypertrophic effects associated with high-glucose conditions. Transforming growth factor (TGF)-beta1 increased the levels of phosphorylated p38 MAP kinase, and p38 MAP kinase blockade reversed the antiproliferative effects of this cytokine. The high glucose-induced increase in phosphorylated p38 MAP kinase was reversed in the presence of TGF-beta1 neutralizing antibody. Although hyperosmolarity also induced antiproliferation (P < 0.0001) and cell hypertrophy (P < 0.05), there was no change in p38 activity, and therefore inhibition of p38 MAP kinase had no influence on these growth responses. Blockade of p42/44 MAP kinase had no effect on the changes in endothelial cell growth induced by either high glucose or hyperosmolarity. High glucose increased p42/44 and p38 MAP kinase activity in human endothelial cells, but only p38 MAP kinase mediated the antiproliferative growth response through the effects of autocrine TGF-beta1. High glucose-induced endothelial cell hypertrophy was independent of activation of the MAP kinases studied. In addition, these effects were independent of any increase in osmolarity associated with high-glucose exposure.
Resumo:
The orthologous proteins of the stress-activated protein kinase-interacting 1 (Sin1) family have been implicated in several different signal transduction pathways. In this study, we have investigated the function of the full-length human Sin1 protein and a C-terminally truncated isoform, Sin 1 alpha, which is produced by alternative splicing. Immunoblot analysis using an anti-Sin 1 polyclonal antibody showed that full-length Sin I and several smaller isoforms are widely expressed. Sin 1 was demonstrated to bind to c-Jun N-terminal kinase (JNK) in vitro and in vivo, while no interaction with p38- or ERK1/2-family MAPKs was observed. The Sin1 alpha isoform could also form a complex with JNK in vivo. Despite localizing in distinct compartments within the cell, both Sin1 and Sin1 alpha co-localized with JNK, suggesting that the Sin1 proteins could recruit JNK. Over-expression of full-length Sin1 inhibited the activation of JNK by UV-C in DG75 cells, as well as basal JNK-activity in HEK293 cells. These data suggest that the human Sin1 proteins may act as scaffold molecules in the regulation of signaling by JNK. (c) 2004 Elsevier Inc. All rights reserved.