93 resultados para MAGNETIC FORCE
em University of Queensland eSpace - Australia
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
The design of open-access elliptical cross-section magnet systems has recently come under consideration. Obtaining values for the forces generated within these unusual magnets is important to progress the designs towards feasible instruments. This paper presents a novel and flexible method for the rapid computation of forces within elliptical magnets. The method is demonstrated by the analysis of a clinical magnetic resonance imaging magnet of elliptical cross-section and open design. The analysis reveals the non-symmetric nature of the generated Maxwell forces, which are an important consideration, particularly in the design of superconducting systems.
Resumo:
The interaction of electromagnetic radiation with plasmas is studied in relativistic four-vector formalism. A gauge and Lorentz invariant ponderomotive four-force is derived from the time dependent nonlinear three-force of Hora (1985). This four-force, due to its Lorentz invariance, contains new magnetic field terms. A new gauge and Lorentz invariant model of the response of plasma to electromagnetic radiation is then devised. An expression for the dispersion relation is obtained from this model. It is then proved that the magnetic permeability of plasma is unity for a general reference frame. This is an important result since it has been previously assumed in many plasma models.
Resumo:
Fatigue was induced in the triceps brachii of the experimental arm by a regimen of either eccentric or concentric muscle actions. Estimates of force were assessed using a contralateral limb-matching procedure, in which target force levels (25 %, 50 % or 75 % of maximum) were defined by the unfatigued control arm. Maximum isometric force-generating capacity was reduced by 31 % immediately following eccentric contractions, and remained depressed at 24 (25 %) and 48 h (13 %) post-exercise. A less marked reduction (8.3 %) was observed immediately following concentric contractions. Those participants who performed prior eccentric contractions, consistently (at all force levels), and persistently (throughout the recovery period), overestimated the level of force applied by the experimental arm. In other words, they believed that they were generating more force than they actually achieved. When the forces applied by the experimental and the control arm, were each expressed as a proportion of the maximum force that could be attained at that time, the estimates matched extremely closely. This outcome is that which would be expected if the estimates of force were based on a sense of effort. Following eccentric exercise, the amplitude of the EMG activity recorded from the experimental arm was substantially greater than that recorded from the control arm. Cortically evoked potentials recorded from the triceps brachii (and extensor carpi radialis) of the experimental arm were also substantially larger than those elicited prior to exercise. The sense of effort was evidently not based upon a corollary of the central motor command. Rather, the relationship between the sense of effort and the motor command appears to have been altered as a result of the fatiguing eccentric contractions. It is proposed that the sense of effort is associated with activity in neural centres upstream of the motor cortex.
Resumo:
We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with two exchange constants J1 and J2 on a lattice that interpolates between the limits of a square lattice (J1=0), a triangular lattice (J2=J1), and decoupled linear chains (J2=0). In all cases, the susceptibility, which has a Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperature Tp. Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature dependence. We compare our results to the inorganic materials Cs2CuCl4 and Cs2CuBr4 and to a number of organic molecular crystals. We find that the former (Cs2CuCl4 and Cs2CuBr4) are weakly frustrated and their exchange parameters determined through the temperature dependence of the susceptibility are in agreement with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with exchange parameters near the isotropic triangular-lattice limit.
Resumo:
We report complex ac magnetic susceptibility measurements of a superconducting transition in very high-quality single-crystal alpha-uranium using microfabricated coplanar magnetometers. We identify an onset of superconductivity at Tapproximate to0.7 K in both the real and imaginary components of the susceptibility which is confirmed by resistivity data. A superconducting volume fraction argument, based on a comparison with a calibration YBa2Cu3O7-delta sample, indicates that superconductivity in these samples may be filamentary. Our data also demonstrate the sensitivity of the coplanar micro-magnetometers, which are ideally suited to measurements in pulsed magnetic fields exceeding 100 T.
Resumo:
Force measurement in hypervelocity expansion tubes is not possible using conventional techniques. The stress wave force balance technique can be applied in expansion tubes to measure forces despite the short test times involved. This paper presents a new calibration technique for multiple-component stress wave force balances where an impulse response created using a load distribution is required and no orthogonal surfaces on the model exist.. This new technique relies on the tensorial superposition of single-component impulse responses analogous to the vectorial superposition of the calibration loads. The example presented here is that of a scale model of the Mars Pathfinder, but the technique is applicable to any geometry and may be useful for cases where orthogonal loads cannot be applied.
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.
Resumo:
Magnetic resonance microscopy (MRM) depends on the use of high field, superconducting magnet systems for its operation. The magnets that are conventionally used are those that were initially designed for chemical structural analysis work. A novel, compact magnet designed specifically for MRM is presented here, and while preserving high field, high homogeneity conditions, has a length less than one-third that of conventional systems. This enables much better access to samples, an important consideration in many MRM experiments. As the homogeneity of a magnet is strongly dependent on its length, novel geometries and optimization techniques are required to meet the requirements of MRM in a compact system. An important outcome of the stochastic optimization performed in this work, is that the use used of a thin superconducting solenoid surrounded by counterwound disk windings provides a mechanism for drastic length reductions over conventional magnet designs. (C) 1998 American Institute of Physics.
Resumo:
The complexes [Fe([9]aneN(2)S)(2)][ClO4](2), [Fe([9]aneN(2)S)(2)][ClO4](3) and [Fe([9]aneNS(2))(2)][ClO4](2) ([9]aneN(2)S = 1-thia-4. 7-diazacyclononane and [9]aneNS(2) = 1,4-dithia-7-azacyclononane) have been prepared and the latter two characterised by X-ray crystallography. The Mossbauer spectra (isomer shift/mm s(-1), quadrupole splitting/mm s(-1), 4.2 K) for [Fe([9]aneN(2)S)(2)][ClO4](2) (0.52, 0.57), [Fe([9]aneN(2)S)(2)][ClO4](3) (0.25, 2.72) and [Fe([9]aneNS(2))(2)][ClO4](2) (0.43, 0.28) are typical for iron(II) and iron(III) complexes. Variable-temperature susceptibility measurements for [Fe([9]aneN(2)S)(2)][ClO4](2) (2-300 K) revealed temperature-dependent behaviour in both the solid state [2.95 mu(B) (300 K)-0.5 mu(B) (4.2 K)] and solution (Delta H degrees 20-22 kJ mol(-1), Delta S degrees 53-60 J mol(-1) K-1). For [Fe([9]aneN(2)S)(2)][ClO4](3) in the solid state [2.3 mu(B) (300 K)-1.9 mu(B) (4.2 K)] the magnetic data were fit to a simple model (H = -lambda L . S + mu L-z) to give the spin-orbit coupling constant (lambda) of -260 +/- 10 cm(-1). The solid-state X-band EPR spectrum of [Fe([9]aneN(2)S)(2)][ClO4](3) revealed axial symmetry (g(perpendicular to) = 2.607, g(parallel to) = 1.599). Resolution of g(perpendicular to) into two components at Q-band frequencies indicated a rhombic distortion. The low-temperature single-crystal absorption spectra of [Fe([9]aneN(2)S)(2)][ClO4](2) and [Fe([9]aneNS(2))(2)][ClO4](2) exhibited additional bands which resembled pseudotetragonal low-symmetry splitting of the parent octahedral (1)A(1g) --> T-1(2g) and (1)A(1g) ---> T-1(1g) transitions. However, the magnitude of these splittings was too large, requiring 10Dq for the thioether donors to be significantly larger than for the amine donors. Instead, these bands were tentatively assigned to weak, low-energy S --> Fe-II charge-transfer transitions. Above 200 K, thermal occupation of the high-spin T-5(2g) ground state resulted in observation of the T-5(2g) --> E-5(g) transition in the crystal spectrum of [Fe([9]aneN(2)S)(2)][ClO4](2). From a temperature-dependence study, the separation of the low-spin (1)A(1g) and high-spin T-5(2g) ground states was approximately 1700 cm(-1). The spectrum of the iron(III) complex [Fe([9]aneN(2)S)(2)][ClO4](3) is consistent with a low-spin d(5) configuration.
Resumo:
A new cyclic octapeptide, cyclo(Ile-Ser-(Gly)Thz-Ile-Thr-(Gly)Thz) (PatN), related to patellamide A, has been synthesized and reacted with copper(II) and base to form mono- and dinuclear complexes. The coordination environments around copper(TI) have been characterized by EPR spectroscopy. The solution structure of the thermodynamically most stable product, a purple dicopper(TI) compound, has been examined by simulating weakly dipole-dipole coupled EPR spectra based upon structural parameters obtained from force field (MM and MD) calculations. The MM-EPR method produces a saddle-shaped structure for [Cu-2(PatN)(OH2)(6)] that is similar to the known solution structure of patellamide A and the known solid-state structure of [Cu-2(AscidH(2))CO3(OH2)(2)]. Compared with the latter, [Cu-2(PatN)] has no carbonate bridge and a significantly flatter topology. The MM-EPR approach to solution-structure determination for paramagnetic metallopeptides may find wide applications to other metallopeptides and metalloproteins.
Resumo:
Site selective luminescence and magnetic circular dichroism experiments on Cr4+-doped yttrium aluminum garnet and yttrium gallium garnet have been made at low temperature. The spectral assignments for these near-IR lasing materials have been made using experimental data and ligand field calculations guided by the known geometry of the lattices. [S0163-1829(99)07003-4].
Resumo:
Magnetic resonance imaging (MRI) was used to evaluate and compare with anthropometry a fundamental bioelectrical impedance analysis (BIA) method for predicting muscle and adipose tissue composition in the lower limb. Healthy volunteers (eight men and eight women), aged 41 to 62 years, with mean (S.D.) body mass indices of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m(2) respectively, were subjected to MRI leg scans, from which 20-cm sections of thigh and IO-cm sections of lower leg (calf) were analysed for muscle and adipose tissue content, using specifically developed software. Muscle and adipose tissue were also predicted from anthropometric measurements of circumferences and skinfold thicknesses, and by use of fundamental BIA equations involving section impedance at 50 kHz and tissue-specific resistivities. Anthropometric assessments of circumferences, cross-sectional areas and volumes for total constituent tissues matched closely MRI estimates. Muscle volume was substantially overestimated (bias: thigh, -40%; calf, -18%) and adipose tissue underestimated (bias: thigh, 43%; calf, 8%) by anthropometry, in contrast to generally better predictions by the fundamental BIA approach for muscle (bias:thigh, -12%; calf, 5%) and adipose tissue (bias:thigh, 17%; calf, -28%). However, both methods demonstrated considerable individual variability (95% limits of agreement 20-77%). In general, there was similar reproducibility for anthropometric and fundamental BIA methods in the thigh (inter-observer residual coefficient of variation for muscle 3.5% versus 3.8%), but the latter was better in the calf (inter-observer residual coefficient of variation for muscle 8.2% versus 4.5%). This study suggests that the fundamental BIA method has advantages over anthropometry for measuring lower limb tissue composition in healthy individuals.
Resumo:
alpha-Conotoxin ImI derives from the venom of Conus imperialis and is the first and only small-peptide ligand that selectively binds to the neuronal alpha(7) homopentameric subtype of the nicotinic acetylcholine receptor (nAChR). This receptor subtype is a possible drug target for several neurological disorders. The cysteines are connected in the pairs Cys2-Cys8 and Cys3-Cys12, To date it is the only alpha-conotoxin with a 4/3 residue spacing between the cysteines, The structure of ImI has been determined by H-1 NMR spectroscopy in aqueous solution, The NMR structure is of high quality, with a backbone pairwise rmsd of 0.34 Angstrom for a family of 19 structures, and comprises primarily a series of nested beta turns. Addition of organic solvent does not perturb the solution structure. The first eight residues of ImI are identical to the larger, but related, conotoxin EpI and adopt a similar structure, despite a truncated second loop. Residues important for binding of ImI to the alpha 7 nAChR are all clustered on one face of the molecule. Once further binding data for EPI and ImI are available, the ImI structure will allow for design of novel alpha(7) nAChR-specific agonists and antagonists with a wide range of potential pharmaceutical applications.