42 resultados para Lumbar-pelvic stabilization
em University of Queensland eSpace - Australia
Resumo:
Study Design. Cross-sectional study of electromyographic onsets of trunk and hip muscles in subjects with a clinical diagnosis of sacroiliac joint pain and matched control subjects. Objectives. To determine whether muscle activation of the supporting leg was different between control subjects and subjects with sacroiliac joint pain during hip flexion in standing. Background. Activation of the trunk and gluteal muscles stabilize the pelvis for load transference; however, the temporal pattern of muscle activation and the effect of pelvic pain on temporal parameters has not been investigated. Methods. Fourteen men with a clinical diagnosis of sacroiliac joint pain and healthy age-matched control subjects were studied. Surface electromyographic activity was recorded from seven trunk and hip muscles of the supporting leg during hip flexion in standing. Onset of muscle activity relative to initiation of the task was compared between groups and between limbs. Results. The onset of obliquus internus abdominis (OI) and multifidus occurred before initiation of weight transfer in the control subjects. the onset of obliquus internus abdominis, multifidus, and gluteus maximus was delayed on the symptomatic side in subjects with sacroiliac joint pain compared with control subjects, and the onset of biceps femoris electromyographic activity was earlier. IN addition, electromyographic onsets were different between the symptomatic and asymptomatic sides in subjects with sacroiliac joint pain. Conclusions. The delayed onset of obliquus internus abdominis, multifidus, and gluteus maximus electromyographic activity of the supporting leg during hip flexion, in subjects with sacroiliac joint pain. suggests an alteration in the strategy for lumbopelvic stabilization that may disrupt load transference through the pelvis.
Resumo:
The pelvic floor muscles (PFM) are part of the trunk stability mechanism. Their function is interdependent with other muscles of this system. They also contribute to continence, elimination, sexual arousal and intra-abdominal pressure. This paper outlines some aspects of function and dysfunction of the PFM complex and describes the contribution of other trunk muscles to these processes. Muscle pathophysiology of stress urinary incontinence (SUI) is described in detail. The innovative rehabilitation programme for SUI presented here utilizes abdominal muscle action to initiate tonic PFM activity. Abdominal muscle activity is then used in PFM strengthening, motor relearning for functional expiratory actions and finally impact training. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Background Control of the trunk is critical for locomotor efficiency. However, investigations of trunk muscle activity and three-dimensional lumbo-pelvic kinematics during walking and running remain scarce. Methods. Gait parameters and three-dimensional lumbo-pelvic kinematics were recorded in seven subjects. Electromyography recordings of abdominal and paraspinal muscles were made using fine-wire and surface electrodes as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Findings. Kinematic data indicate that the amplitude but not timing of lumbo-pelvic motion changes with locomotor speed. Conversely, a change in locomotor mode is associated with temporal but not spatial adaptation in neuromotor strategy. That is, peak transverse plane lumbo-pelvic rotation occurs at foot strike during walking but prior to foot strike during running. Despite this temporal change, there is a strong correlation between the amplitude of transverse plane lumbo-pelvic rotation and stride length during walking and running. In addition, Jumbo-pelvic motion was asymmetrical during all locomotor tasks. Trunk muscle electromyography occurred biphasically in association with foot strike. Transversus abdominis was tonically active with biphasic modulation. Consistent with the kinematic data, electromyography activity of the abdominal muscles and the superficial fibres of multifidus increased with locomotor speed, and timing of peak activity of superficial multifidus and obliquus externus abdominis was modified in association with the temporal adaptation in lumbo-pelvic motion with changes in locomotor mode. Interpretation. These data provide evidence of the association between lumbo-pelvic motion and trunk muscle activity during locomotion at different speeds and modes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Study Design: Randomized controlled trial. Objective: To determine if the provision of visual biofeedback using real-time ultrasound imaging enhances the ability to activate the multifidus muscle. Background: Increasingly clinicians are using real-time ultrasound as a form of biofeedback when re-educating muscle activation. The effectiveness of this form of biofeedback for the multifidus muscle has not been reported. Methods and Measures: Healthy subjects were randomly divided into groups that received different forms of biofeedback. All subjects received clinical instruction on how to activate the multifidus muscle isometrically prior to testing and verbal feedback regarding the amount of multifidus contraction, which occurred during 10 repetitions (acquisition phase). In addition, 1 group received visual biofeedback (watched the multifidus muscle contract) using real-time ultrasound imaging. All subjects were reassessed a week later (retention phase). Results: Subjects from both groups improved their voluntary contraction of the multifidus muscle in the acquisition phase (P
Resumo:
Study Design. Biomechanical study of unembalmed human lumbar segments. Objective. To investigate the effects of tensioning the lumbar fasciae ( transversus abdominis [TrA]) aponeurosis) on segment stiffness during flexion and extension. Summary of Background Data. Animal and human studies suggest that TrA may influence intersegmental movement via tension in the middle and posterior layers of lumbar fasciae ( MLF, PLF). Methods. Compressive flexion and extension moments were applied to 17 lumbar segments from 9 unembalmed cadavers with 20 N lateral tension of the TrA aponeurosis during: 1) static tests: load was compared when fascial tension was applied during static compressive loads into flexion-extension; 2) cyclic loading tests: load, axial displacement, and stiffness were compared during repeated compressive loading cycles into flexion-extension. After testing, the PLF was incised to determine the tension transmitted by each layer. Results. At all segments and loads (< 200 N), fascial tension increased resistance to flexion loads by similar to 9.5 N. In 15 of 17, fascial tension decreased resistance to extension by similar to 6.6 N. Fascial tension during cyclic flexion loading decreased axial displacement by 26% at the onset of loading (0 - 2 N) and 2% at 450 N ( 13 of 17). During extension loading, fascial tension increased displacement at the onset of loading ( 10 of 17) by similar to 23% and slightly (1%) decreased displacement at 450 N. Segment stiffness was increased by 6 N/mm in flexion (44% at 25 N) and decreased by 2 N/mm (8% at 25 N) in extension. More than 85% of tension was transmitted through the MLF. Conclusions. Tension on the lumbar fasciae simulating moderate contraction of TrA affects segmental stiffness, particularly toward the neutral zone.
Resumo:
The ciliary neurotrophic factor alpha-receptor(CNTFRalpha) is required for motoneuron survival during development, but the relevant ligand(s) has not been determined. One candidate is the heterodimer formed by cardiotrophin-like cytokine (CLC) and cytokine-like factor 1 (CLF). CLC/CLF binds to CNTFRalpha and enhances the survival of developing motoneurons in vitro; whether this novel trophic factor plays a role in neural development in vivo has not been tested. We examined motor and sensory neurons in embryonic chicks treated with CLC and in mice with a targeted deletion of the clf gene. Treatment with CLC increased the number of lumbar spinal cord motoneurons that survived the cell death period in chicks. However, this effect was regionally specific, because brachial and thoracic motoneurons were unaffected. Similarly, newborn clf -/- mice exhibited a significant reduction in lumbar motoneurons, with no change in the brachial or thoracic cord. Clf deletion also affected brainstem motor nuclei in a regionally specific manner; the number of motoneurons in the facial but not hypoglossal nucleus was significantly reduced. Sensory neurons of the dorsal root ganglia were not affected by either CLC treatment or clf gene deletion. Finally, mRNA for both clc and clf was found in skeletal muscle fibers of embryonic mice during the motoneuron cell death period. These findings support the view that CLC/CLF is a target-derived factor required for the survival of specific pools of motoneurons. The in vivo actions of CLC and CLF can account for many of the effects of CNTFRalpha on developing motoneurons.
Resumo:
Modifications at the N-terminus of the rabbit CYP4B1 gene resulted in expression levels in Escherichia coli of up to 660 nmol/L. Solubilization of the enzyme from bacterial membranes led to substantial conversion to cytochrome P420 unless alpha-naphthoflavone was added as a stabilizing ligand. Mass spectrometry analysis and Edman sequencing of purified enzyme preparations revealed differential N-terminal post-translational processing of the various constructs expressed. Notably, bacterial expression of CYP4B1 produced a holoenzyme with >98.5% of its heme prosthetic group covalently linked to the protein backbone. The near fully covalently linked hernoproteins exhibited similar rates and regioselectivities of lauric acid hydroxylation to that observed previously for the partially heme processed enzyme expressed in insect cells. These studies shed new light on the consequences of covalent heme processing in CYP4B1 and provide a facile system for future mechanistic and structural studies with the enzyme. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
An analytically simple and tractable approach to firm-level welfare analysis of complete and partial mean-preserving price stabilization for producers with general risk-averse preferences facing a stochastic technology is developed. Necessary and sufficient conditions for price stabilization to be welfare enhancing are derived under different assumptions of the producer's preferences and the producer's technology. Existing stabilization results for the risk-averse firm are shown to be corollaries of these more general results.
Resumo:
A range of environmental risk factors, with childbirth the most notable, have been associated with the development of pelvic organ prolapse and urinary incontinence. However, indications of genetic influence (positive family histories, ethnic differences) have prompted research into the heritability of measures of pelvic organ descent and joint mobility, which have also been associated with prolapse and incontinence. Genes appear to influence about half of the variation in these measures and, furthermore, the pelvic organ measures are associated with elbow hyperextension at a phenotypic level (r approximate to .2). We examined these measures in young, nulligravid women to determine if their association is due to a common genetic source. Data were collected from 178 Caucasian female co-twins and non-twin sisters, 50 of whom returned to be retested, which allowed reliability to be estimated and unreliable variance to be isolated in the multivariate analyses. Structural equation modeling was used to estimate genetic associations between latent elbow and bladder mobility factors for which heritabilities were estimated to be 0.80 and 0.64 respectively. The association between these factors appeared to be mediated by common genes (genetic r = .48, non-shared environmental r = -.06), with genes influencing latent elbow mobility accounting for 14% of the variation in latent bladder mobility. We speculate that genes influencing connective tissue structure may underlie this association.
Resumo:
The ovine lumbar intervertebral disc is a useful model for the human lumbar disc. We present preliminary estimates of diffusion coefficients and T-2 relaxation times in a pilot MRI study of the ovine lumbar intervertebral disc during uniaxial compression in vitro, and identify factors that hamper the ability to accurately monitor the temporal evolution of the effective diffusion tensor at high spatial resolution.
Resumo:
Mixed ammonia-water vapor postsynthesis treatment provides a simple and convenient method for stabilizing mesostructured silica films. X-ray diffraction, transmission electron microscopy, nitrogen adsorption/desorption, and solid-state NMR (C-13, Si-29) were applied to study the effects of mixed ammonia-water vapor at 90 degreesC on the mesostructure of the films. An increased cross-linking of the silica network was observed. Subsequent calcination of the silica films was seen to cause a bimodal pore-size distribution, with an accompanying increase in the volume and surface area ratios of the primary (d = 3 nm) to secondary (d = 5-30 nm) pores. Additionally, mixed ammonia-water treatment was observed to cause a narrowing of the primary pore-size distribution. These findings have implications for thin film based applications and devices, such as sensors, membranes, or surfaces for heterogeneous catalysis.
Resumo:
In the presence of nonionic block-copolymer surfactant, nanocrystalline zirconia particles with MSU mesostrucmre were synthesized by a novel solid-state reaction route. The zirconia particles possess a nanocrystalline pore wall, which renders higher thermal stability compared to an amorphous framework. To further enhance its stability, laponite, a synthetic clay, was introduced. Laponite acts as an inhibitor to crystal a growth and also as a hard template for the mesostructure. High surface area and ordered pore structure were observed in the stabilized zirconia. The results show that the formation of the MSU structure is attributed to reverse hexagonal micelles, which are the products of the cooperative self-assembly of organic and inorganic species in the solid-state synthesis system with crystalline water and hygroscopic water present.
Resumo:
In liquid-liquid dispersion systems, the dynamic change of the interfacial properties between the two immiscible liquids plays an important role in both the emulsification process and emulsion stabilization. In this paper, experimentally measured dynamic interfacial tensions of 1-chlorobutane in the aqueous solutions of various random copolymers of polyvinyl acetate and polyvinyl alcohol (PVAA) are presented. Theoretical analyses on these results suggest that the adsorption of the polymer molecules is controlled neither by the bulk diffusion process nor the activation energy barrier for the adsorption but the conformation of polymer molecules. Based on the concept of critical concentration of condensation for polymer adsorption, as well as the observation that the rate at which the dynamic interfacial tension changes does not correlate to the PVAA's ability to stabilize a single drop, it is postulated that the main stabilization mechanism for the PVAAs is by steric hindrance, not the Gibbs-Marangoni effect offered by the small molecule surfactants.