3 resultados para Ludovico Sforza, Duke of Milan, 1452-1508.

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to better understand the microbial diversity and endosymbiotic microbiota of the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homoptera: Pseudococcidae), culture-independent approaches, namely PCR, a 16S rDNA clone library, and temperature gradient gel electrophoresis (TGGE) were used. Previous work has indicated that the acetic acid bacteria Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens represent only a small proportion of the microbial community of the PSMB. These findings were supported in this study by TGGE, where no bands representing G. sacchari, G. diazotrophicus, and G. liquefaciens on the acrylamide gel could be observed following electrophoresis, and by a 16S rDNA clone library study, where no clones with the sequence of an acetic acid bacterium were found. Instead, TGGE revealed that the mealybug microbial community was dominated by beta- and gamma-Proteobacteria. The dominant band in TGGE gels found in a majority of the mealybug samples was most similar, according to BLAST analysis, to the beta-symbiont of the craw mealybug Antonina crawii and to Candidatus Tremblaya princeps, an endosymbiont from the mealybug Paracoccus nothofagicola. The sequences of other dominant bands were identified as gamma-Proteobacteria, and were most closely related to uncultured bacterial clones obtained from soil samples. Mealybugs collected from different areas in Queensland, Australia, were found to produce similar TGGE profiles, although there were a few exceptions. A 16S rDNA clone library based on DNA extracted from a mealybug collected from sugarcane in the Burdekin region in Queensland, Australia, indicated very low levels of diversity among mealybug microbial populations. All sequenced clones were most closely related to the same members of the gamma-Proteobacteria, according to BLAST analysis.