45 resultados para Lucilia-cuprina Diptera
em University of Queensland eSpace - Australia
Resumo:
Spinosad was an effective larvicide against the Australian sheep blowfly, Lucilia cuprina. A survey of 41 field populations indicated no cross-resistance to spinosad from existing organophosphate resistance. The data presented serve as baseline data for future resistance surveys.
Resumo:
Attempts to immunise sheep against natural infestations by Lucilia cuprina larvae have not been effective. Yet it is known that the larvae excrete the immunosuppressant ammonium bicarbonate. The effect of larval ammonium and nonionic ammonia on immunopathobiology was evaluated in 12 infested sheep. The concentration of ammonium in veins draining infested sites was measured in another group of four sheep. Mean jugular unionized ammonia concentration increased 3.5 to 5.6 times above pre-infested control levels. Mean venous ammonium concentrations draining infested sites were 13 times higher than pre-infested jugular or carotid levels. Increases in jugular ammonia concentrations correlated with increased number of larvae, area of infestation, earlier death, neutropenia, eosinopenia, lymphocytopenia, large declines in serum globulins and zinc, and large rises in toxic neutrophils. The high concentrations of toxic unionized ammonia in blood directly permanently damaged neutrophils and lymphocytes and depressed serum globulin production. The results show that the ammonium from the excreta of larvae of L. cuprina may be highly immunosupressive. (C) 1997 Elsevier Science B.V.
Resumo:
Chemotherapy is central to the control of many parasite infections of both medical and veterinary importance. However, control has been compromised by the emergence of drug resistance in several important parasite species. Such parasites cover a broad phylogenetic range and include protozoa, helminths and arthropods. In order to achieve effective parasite control in the future, the recognition and diagnosis of resistance will be crucial. This demand for early, accurate diagnosis of resistance to specific drugs in different parasite species can potentially be met by modern molecular techniques. This paper summarises the resistance status of a range of important parasites and reviews the available molecular techniques for resistance diagnosis. Opportunities for applying successes in some species to other species where resistance is less well understood are explored. The practical application of molecular techniques and the impact of the technology on improving parasite control are discussed. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The cut gene of Drosophila melanogaster is an identity selector gene that establishes the program of development and differentiation of external sense organs. Mutations in the cut gene cause a transformation of the external sense organs into chordotonal organs, originally assessed by the use of immunostaining methods [Bodmer et al. (1987): Cell, 51:293-307]. Because of evidence that axonal projections of the transformed neurons within the central nervous system are not completely switched in cut mutants, the transformation of the four cells making up a sense organ was reassessed using single-cell staining with fluorescent dye and differential interface contrast (DIC) microscopy of the embryo and larva. The results provide strong evidence that all cells of the sense organs are completely transformed, exhibiting the morphologies and organelles characteristic of chordotonal sense organs. A comparison of the structures of external sense organs and chordotonal organs indicates that a number of the differences could be due to the degree of development of common structures, and that cut or downstream genes modulate effector genes that are normally utilized in both receptor types. The possible derivation of insect chordotonal and external sense organs from a receptor type found in crustaceans is discussed in the light of arthropod phylogenetics and the molecular genetics of sense organ development. (C) 1997 Wiley-Liss, Inc.
Resumo:
Objective To measure the residues of spinosad and chlorhexidine in the tissues of sheep after treatment of blowfly strike. Procedure Fourteen sheep with natural myiasis and 12 with artificial infestations of Lucilia cuprina larvae had the wool removed over their infestations and were treated with an aerosol wound dressing containing spinosad and chlorhexidine. Sheep were killed up to 14 days after treatment and residues of the chemicals measured in tissues. Results Chlorhexidine was not detected in any tissue. Residues of spinosad were highest in fat, lowest in muscle and intermediate in liver and kidney. The highest residue detected was 0.2 mg/kg spinosad in perirenal fat 7 days after generous treatment of a sheep with a large fly strike. Residues of spinosad in fat peaked 3 to 7 days after treatment and 1 to 3 days after treatment in liver and kidney. Conclusion These studies present a realistic worst-case in struck sheep and at the highest dose studied, equivalent to 5.8 mg spinosad per kg body weight, the maximum residue detected of 0.2 mg/kg in peri-renal fat was 20% of the Australian maximum residue limit. Muscle, liver and kidney residues of spinosad were also below the Australian maximum residue limits at all times.
Resumo:
Wolbachia are maternally inherited intracellular bacteria that infect a wide range of arthropods and nematodes and are associated with various reproductive abnormalities in their hosts. Insect-associated Wolbachia form a monophyletic clade in the α-Proteobacteria and recently have been separated into two supergroups (A and B) and 19 groups. Our recent polymerase chain reaction (PCR) survey using wsp specific primers indicated that various strains of Wolbachia were present in mosquitoes collected from Southeast Asia. Here, we report the phylogenetic relationship of the Wolbachia strains found in these mosquitoes using wsp gene sequences. Our phylogenetic analysis revealed eight new Wolbachia strains, five in the A supergroup and three in the B supergroup. Most of the Wolbachia strains present in Southeast Asian mosquitoes belong to the established Mors, Con, and Pip groups.
Resumo:
Old and New World phlebotomine sand fly species were screened for infection with Wolbachia, intracellular bacterial endosymbionts found in many arthropods and filarial nematodes. Of 53 samples representing 15 species, nine samples of four species were found positive for Wolbachia by polymerase chain reaction amplification using primers for the Wolbachia surface protein (wsp) gene. Five of the wsp gene fragments from four species were cloned, sequenced, and used for phylogenetic analysis. These wsp sequences were placed in three different clades within the arthropod associated Wolbachia (groups A and B), suggesting that Wolbachia has infected sand flies on more than one occasion. Two distantly related sand fly species, Lutzomyia (Psanthyromyia) shannoni (Dyar) and Lutzomyia (Nyssomyia) whitmani (Antunes & Coutinho), infected with an identical Wolbachia strain suggest a very recent horizontal transmission.
Resumo:
Polymerase chain reaction screening revealed that Armigeres subalbatus (Coquillett), a vector of filariasis, was infected with the intracellular bacteria Wolbachia. Laboratory crosses between infected males and uninfected females resulted in less than half the number of offspring than control crosses between uninfected individuals when young (2- to 3-d-old) males were used in the cross. However, incompatibility was lost when old (14- to 17-d-old) males were used. Field-collected females did not show detectable cytoplasmic incompatibility, and this may be because of the age at which males mate in the field. We used head pigment fluorescence levels to age field males collected from mating swarms, and found that 25-63% of swarming males were older than 13 d. Male age may be one factor influencing the observed low levels of cytoplasmic incompatibility detected in the field.
Resumo:
Field collected flies were screened for the presence of rabbit haemorrhagic disease virus (RHDV) by applying reverse transcriptase PCR (RT-PCR) in which primers specific to the capsid protein of the virus were used. The virus was detected in flies from locations where rabbit haemorrhagic disease (RHD) was reported and also soon after the release of RHDV in a 'clean' area. Oral and/or anal excretions of flies (flyspots) were found to contain viable virus and oral inoculation of rabbits revealed that a single flyspot was able to cause RHD. We conclude that flyspots are a major potential source of the virus for oral or conjunctival transmission of the virus to rabbits. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The reproductive system of many female Therevidae has a sac-like structure associated with the spermathecae. This structure, termed the spermathecal sac, has not been recorded previously from any other Diptera and appears unique to certain members of the Therevidae. There is enormous variety in spermathecal sac size and shape, with greatest development in the Australasian Therevidae. A histological examination of the reproductive system of two;Australian therevids, Agapophytus albobasalis Mann and Ectinorhynchus variabilis (Macquart) (Diptera: Asiloidea), reveals that the spermathecal sacs are cuticle-lined and that the intima is frequently highly folded. In some mated individuals, sperm was found within the spermathecal sac, suggesting that sperm and perhaps male accessory gland material is deposited there during copulation. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Studies were conducted at sites in south-cast Queensland, Australia, to investigate the effect of habitat modification for mosquito control on the distribution of eggshells of the salt marsh mosquito, Ochlerotatus vigilax (Skuse). Modifications were mainly tunnelling, but an Open Marsh Water Management (OMWM) site and a grid-ditched site were also included. There were two separate experimental designs: one was data collected Before and After (BA) modification and the other was for other sites with a Treatment and Control (TC) experimental design. For the BA data, there were significant reductions in eggshells after modification. Eggshells were generally fewer after modification in areas which were close to unrestricted tidal flushing. A sandy substrate and vegetation changes which resulted in reduced Sporobolus virginicus or mixed Sporobolus and Sarcocornia quinqueflora also contributed to the effect. In the TC experiment, there was no effect of modification at the tunnelled site, eggshells were fewer at the OMWM site, but there were more eggshells at the grid-ditched site. There was some general indication that recent oviposition activity was reduced in sites that had been modified, evidenced by a relatively small proportion of young (dark coloured) eggshells.
Resumo:
All life-history stages of the Australian Podonominae (Chironomidae) genus Archaeochlus Brundin are revised, providing evidence for recognition of a separate clade, named here as Austrochlus Cranston. Based on molecular and morphological evidence, the clade contains two additional species: Austrochlus parabrundini Cranston, Edward and Cook sp. n. is described from Western Australia where its granite outcrop seepage habitat and geographical range is almost identical to that of the type species Austrochlus brundini Cranston, Edward and Colless (n. comb); Austrochlus centralaustralis Cranston, Edward and Cook sp. n. is described from ephemeral seepage/flows in the MacDonnell and James Ranges of central Australia. Molecular studies reported here confirm species distinctions, relationships to African taxa, and basal relationships within the Chironomidae. Modelled distributions provide evidence for range restriction by seasonal rainfall patterns.
Resumo:
The drosophilid fauna in Australia offers an important study system for evolutionary studies. Larval hosts are unknown for most species, however, and this imposes serious limits to understanding their ecological context. The present paper reports the first systematic, large-scale field survey of potential larval hosts to be conducted, in order to obtain an overview of the host utilisation patterns of Australian drosophilids. Potential hosts (mostly fruit and fungi) were collected from different vegetation types in northern and eastern Australia. Host data were obtained for 81 drosophilid species from 17 genera (or 28% of the known Fauna). Most genera were restricted to either fruit or fungi, although Scaptodrosophila spp. and Drosophila spp. were recorded from fruit, fungi, flowers and compost, and Drosophila spp. also emerged from the parasitic plant Balanophora fungosa. There was no evidence that use of either fruit or fungi was correlated to host phylogeny. Drosophilids emerged from hosts collected from all sampled vegetation types (rainforest, open forest, heath and domestic environments). Vegetation type influenced drosophilid diversity, both by affecting host availability and because some drosophilid species apparently restricted their search for hosts to particular vegetation types.
Resumo:
Taeniogonalos raymenti is confirmed as a hyperparasitoid of the tachinid Sturmia convergens which parasitises larval Danaus plexippus. Trigonalids are indirect parasitoids and in this case we have direct evidence that wasp eggs must have been laid on the caterpillar's host plant. Asclepias fruticosa. before the secondary host, but not necessarily before the primary tachinid host, was present. Levels of hyperparasitism during our sampling period were very low at less than two percent.