2 resultados para Lsu
em University of Queensland eSpace - Australia
Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium
Resumo:
The chloroplast genes of dinoflagellates are distributed among small, circular dsDNA molecules termed minicircles. In this paper, we describe the structure of the non-coding region of the psbA minicircle from Symbiodinium. DNA sequence was obtained from five Symbiodinium strains obtained from four different coral host species (Goniopora tenuidens, Heliofungia actiniformis, Leptastrea purpurea and Pocillopora damicornis), which had previously been determined to be closely related using LSU rDNA region D1/D2 sequence analysis. Eight distinct sequence blocks, consisting of four conserved cores interspersed with two metastable regions and flanked by two variable regions, occurred at similar positions in all strains. Inverted repeats (IRs) occurred in tandem or 'twin' formation within two of the four cores. The metastable regions also consisted of twin IRs and had modular behaviour, being either fully present or completely absent in the different strains. These twin IRs are similar in sequence to double-hairpin elements (DHEs) found in the mitochondrial genomes of some fungi, and may be mobile elements or may serve a functional role in recombination or replication. Within the central unit (consisting of the cores plus the metastable regions), all IRs contained perfect sequence inverses, implying they are highly evolved. IRs were also present outside the central unit but these were imperfect and possessed by individual strains only. A central adenine-rich sequence most closely resembled one in the centre of the non-coding part of Amphidinium operculatum minicircles, and is a potential origin of replication. Sequence polymorphism was extremely high in the variable regions, suggesting that these regions may be useful for distinguishing strains that cannot be differentiated using molecular markers currently available for Symbiodinium.
Resumo:
A molecular approach was used to genetically characterize 5 species (Aoruroides queenslandensis. Blattophila sphaerolaima, Cordonicola gibsoni, Desmicola ornato and Leidynemella fusiformis) belonging to the superfamily. Thelastomatoidea fi (Nematoda: Oxyurida), a group of pinworms that parasitizes terrestrial arthropods. The D3 domain of the large subunit Of nuclear ribosomal RNA (LSU) was sequenced for individual specimens, and the analysis of the sequence data allowed the genetic relationships of the 5 species to be studied dagger. The sequence variation in the D3 domain within individual species (0-1-8%) was significantly less than the differences among species (4(.)3-12(.)4%). Phylogenetic analyses, Using maximum parsimony, maximum likelihood, and neighbour-joining, tree-building methods, established relationships among the 5 species of Thelastomatoidea and Oxyuris equi (a species of the order Oxyurida). The molecular approach employed provides the prospect for developing DNA tools for the specific identification of the Thelastomatoidea, irrespective of developmental stage and sex, as a basis for systematic, ecological and/or population genetic investigations of members within this superfamily.