3 resultados para Logistic

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objective: To examine if commonly recommended assumptions for multivariable logistic regression are addressed in two major epidemiological journals. Methods: Ninety-nine articles from the Journal of Clinical Epidemiology and the American Journal of Epidemiology were surveyed for 10 criteria: six dealing with computation and four with reporting multivariable logistic regression results. Results: Three of the 10 criteria were addressed in 50% or more of the articles. Statistical significance testing or confidence intervals were reported in all articles. Methods for selecting independent variables were described in 82%, and specific procedures used to generate the models were discussed in 65%. Fewer than 50% of the articles indicated if interactions were tested or met the recommended events per independent variable ratio of 10: 1. Fewer than 20% of the articles described conformity to a linear gradient, examined collinearity, reported information on validation procedures, goodness-of-fit, discrimination statistics, or provided complete information on variable coding. There was no significant difference (P >.05) in the proportion of articles meeting the criteria across the two journals. Conclusion: Articles reviewed frequently did not report commonly recommended assumptions for using multivariable logistic regression. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pharmacodynamics (PD) is the study of the biochemical and physiological effects of drugs. The construction of optimal designs for dose-ranging trials with multiple periods is considered in this paper, where the outcome of the trial (the effect of the drug) is considered to be a binary response: the success or failure of a drug to bring about a particular change in the subject after a given amount of time. The carryover effect of each dose from one period to the next is assumed to be proportional to the direct effect. It is shown for a logistic regression model that the efficiency of optimal parallel (single-period) or crossover (two-period) design is substantially greater than a balanced design. The optimal designs are also shown to be robust to misspecification of the value of the parameters. Finally, the parallel and crossover designs are combined to provide the experimenter with greater flexibility.