37 resultados para Logics and Meanings of Programs

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a logic of progress for concurrent programs. The logic is based on that of UNITY, molded to fit a sequential programming model. Integration of the two is achieved by using auxiliary variables in a systematic way that incorporates program counters into the program text. The rules for progress in UNITY are then modified to suit this new system. This modification is however subtle enough to allow the theory of Owicki and Gries to be used without change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-blocking program is one that uses non-blocking primitives, such as load-linked/store-conditional and compare-and-swap, for synchronisation instead of locks so that no process is ever blocked. According to their progress properties, non-blocking programs may be classified as wait-free, lock-free or obstruction-free. However, a precise description of these properties does not exist and it is not unusual to find a definition that is ambiguous or even incorrect. We present a formal definition of the progress properties so that any confusion is removed. The formalisation also allows one to prove the widely believed presumption that wait-freedom is a special case of lock-freedom, which in turn is a special case of obstruction-freedom.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous work on formally modelling and analysing program compilation has shown the need for a simple and expressive semantics for assembler level programs. Assembler programs contain unstructured jumps and previous formalisms have modelled these by using continuations, or by embedding the program in an explicit emulator. We propose a simpler approach, which uses techniques from compiler theory in a formal setting. This approach is based on an interpretation of programs as collections of program paths, each of which has a weakest liberal precondition semantics. We then demonstrate, by example, how we can use this formalism to justify the compilation of block-structured high-level language programs into assembler.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory of Owicki and Gries has been used as a platform for safety-based verifcation and derivation of concurrent programs. It has also been integrated with the progress logic of UNITY which has allowed newer techniques of progress-based verifcation and derivation to be developed. However, a theoretical basis for the integrated theory has thus far been missing. In this paper, we provide a theoretical background for the logic of Owicki and Gries integrated with the logic of progress from UNITY. An operational semantics for the new framework is provided which is used to prove soundness of the progress logic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trust is a vital feature for Semantic Web: If users (humans and agents) are to use and integrate system answers, they must trust them. Thus, systems should be able to explain their actions, sources, and beliefs, and this issue is the topic of the proof layer in the design of the Semantic Web. This paper presents the design and implementation of a system for proof explanation on the Semantic Web, based on defeasible reasoning. The basis of this work is the DR-DEVICE system that is extended to handle proofs. A critical aspect is the representation of proofs in an XML language, which is achieved by a RuleML language extension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we extend the conventional framework of program refinement down to the assembler level. We describe an extension to the Refinement Calculus that supports the refinement of programs in the Guarded Command Language to programs in .NET assembler. This is illustrated by a small example.