36 resultados para Logic-based optimization algorithm
em University of Queensland eSpace - Australia
Resumo:
We propose a simulated-annealing-based genetic algorithm for solving model parameter estimation problems. The algorithm incorporates advantages of both genetic algorithms and simulated annealing. Tests on computer-generated synthetic data that closely resemble optical constants of a metal were performed to compare the efficiency of plain genetic algorithms against the simulated-annealing-based genetic algorithms. These tests assess the ability of the algorithms to and the global minimum and the accuracy of values obtained for model parameters. Finally, the algorithm with the best performance is used to fit the model dielectric function to data for platinum and aluminum. (C) 1997 Optical Society of America.
Resumo:
This paper reports on a system for automated agent negotiation, based on a formal and executable approach to capture the behavior of parties involved in a negotiation. It uses the JADE agent framework, and its major distinctive feature is the use of declarative negotiation strategies. The negotiation strategies are expressed in a declarative rules language, defeasible logic, and are applied using the implemented system DR-DEVICE. The key ideas and the overall system architecture are described, and a particular negotiation case is presented in detail.
Resumo:
The stable similarity reduction of a nonsymmetric square matrix to tridiagonal form has been a long-standing problem in numerical linear algebra. The biorthogonal Lanczos process is in principle a candidate method for this task, but in practice it is confined to sparse matrices and is restarted periodically because roundoff errors affect its three-term recurrence scheme and degrade the biorthogonality after a few steps. This adds to its vulnerability to serious breakdowns or near-breakdowns, the handling of which involves recovery strategies such as the look-ahead technique, which needs a careful implementation to produce a block-tridiagonal form with unpredictable block sizes. Other candidate methods, geared generally towards full matrices, rely on elementary similarity transformations that are prone to numerical instabilities. Such concomitant difficulties have hampered finding a satisfactory solution to the problem for either sparse or full matrices. This study focuses primarily on full matrices. After outlining earlier tridiagonalization algorithms from within a general framework, we present a new elimination technique combining orthogonal similarity transformations that are stable. We also discuss heuristics to circumvent breakdowns. Applications of this study include eigenvalue calculation and the approximation of matrix functions.
Resumo:
Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.
Resumo:
This paper addresses the problem of ensuring compliance of business processes, implemented within and across organisational boundaries, with the constraints stated in related business contracts. In order to deal with the complexity of this problem we propose two solutions that allow for a systematic and increasingly automated support for addressing two specific compliance issues. One solution provides a set of guidelines for progressively transforming contract conditions into business processes that are consistent with contract conditions thus avoiding violation of the rules in contract. Another solution compares rules in business contracts and rules in business processes to check for possible inconsistencies. Both approaches rely on a computer interpretable representation of contract conditions that embodies contract semantics. This semantics is described in terms of a logic based formalism allowing for the description of obligations, prohibitions, permissions and violations conditions in contracts. This semantics was based on an analysis of typical building blocks of many commercial, financial and government contracts. The study proved that our contract formalism provides a good foundation for describing key types of conditions in contracts, and has also given several insights into valuable transformation techniques and formalisms needed to establish better alignment between these two, traditionally separate areas of research and endeavour. The study also revealed a number of new areas of research, some of which we intend to address in near future.
Resumo:
Business process design is primarily driven by process improvement objectives. However, the role of control objectives stemming from regulations and standards is becoming increasingly important for businesses in light of recent events that led to some of the largest scandals in corporate history. As organizations strive to meet compliance agendas, there is an evident need to provide systematic approaches that assist in the understanding of the interplay between (often conflicting) business and control objectives during business process design. In this paper, our objective is twofold. We will firstly present a research agenda in the space of business process compliance, identifying major technical and organizational challenges. We then tackle a part of the overall problem space, which deals with the effective modeling of control objectives and subsequently their propagation onto business process models. Control objective modeling is proposed through a specialized modal logic based on normative systems theory, and the visualization of control objectives on business process models is achieved procedurally. The proposed approach is demonstrated in the context of a purchase-to-pay scenario.
Resumo:
We present a fast method for finding optimal parameters for a low-resolution (threading) force field intended to distinguish correct from incorrect folds for a given protein sequence. In contrast to other methods, the parameterization uses information from >10(7) misfolded structures as well as a set of native sequence-structure pairs. In addition to testing the resulting force field's performance on the protein sequence threading problem, results are shown that characterize the number of parameters necessary for effective structure recognition.
Resumo:
This paper presents an approach for translating legalese expression of business contracts into candidate business activities and processes while ensuring their compliance with contract. This is a progressive refinement using logic-based formalism to capture contract semantics and to serve as an intermediate step for transformation. Particular value of this approach is for those organisations that consider moving towards new approaches to enterprise contract management and applying them to their future contracts.
Resumo:
We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.
Resumo:
The parameterless self-organizing map (PLSOM) is a new neural network algorithm based on the self-organizing map (SOM). It eliminates the need for a learning rate and annealing schemes for learning rate and neighborhood size. We discuss the relative performance of the PLSOM and the SOM and demonstrate some tasks in which the SOM fails but the PLSOM performs satisfactory. Finally we discuss some example applications of the PLSOM and present a proof of ordering under certain limited conditions.
Resumo:
We explore of the feasibility of the computationally oriented institutional agency framework proposed by Governatori and Rotolo testing it against an industrial strength scenario. In particular we show how to encode in defeasible logic the dispute resolution policy described in Article 67 of FIDIC.
Resumo:
On the basis of a spatially distributed sediment budget across a large basin, costs of achieving certain sediment reduction targets in rivers were estimated. A range of investment prioritization scenarios were tested to identify the most cost-effective strategy to control suspended sediment loads. The scenarios were based on successively introducing more information from the sediment budget. The relationship between spatial heterogeneity of contributing sediment sources on cost effectiveness of prioritization was investigated. Cost effectiveness was shown to increase with sequential introduction of sediment budget terms. The solution which most decreased cost was achieved by including spatial information linking sediment sources to the downstream target location. This solution produced cost curves similar to those derived using a genetic algorithm formulation. Appropriate investment prioritization can offer large cost savings because the magnitude of the costs can vary by several times depending on what type of erosion source or sediment delivery mechanism is targeted. Target settings which only consider the erosion source rates can potentially result in spending more money than random management intervention for achieving downstream targets. Coherent spatial patterns of contributing sediment emerge from the budget model and its many inputs. The heterogeneity in these patterns can be summarized in a succinct form. This summary was shown to be consistent with the cost difference between local and regional prioritization for three of four test catchments. To explain the effect for the fourth catchment, the detail of the individual sediment sources needed to be taken into account.
Resumo:
A new algorithm has been developed for smoothing the surfaces in finite element formulations of contact-impact. A key feature of this method is that the smoothing is done implicitly by constructing smooth signed distance functions for the bodies. These functions are then employed for the computation of the gap and other variables needed for implementation of contact-impact. The smoothed signed distance functions are constructed by a moving least-squares approximation with a polynomial basis. Results show that when nodes are placed on a surface, the surface can be reproduced with an error of about one per cent or less with either a quadratic or a linear basis. With a quadratic basis, the method exactly reproduces a circle or a sphere even for coarse meshes. Results are presented for contact problems involving the contact of circular bodies. Copyright (C) 2002 John Wiley Sons, Ltd.