9 resultados para Local Assessment
em University of Queensland eSpace - Australia
Resumo:
Most of the modem developments with classification trees are aimed at improving their predictive capacity. This article considers a curiously neglected aspect of classification trees, namely the reliability of predictions that come from a given classification tree. In the sense that a node of a tree represents a point in the predictor space in the limit, the aim of this article is the development of localized assessment of the reliability of prediction rules. A classification tree may be used either to provide a probability forecast, where for each node the membership probabilities for each class constitutes the prediction, or a true classification where each new observation is predictively assigned to a unique class. Correspondingly, two types of reliability measure will be derived-namely, prediction reliability and classification reliability. We use bootstrapping methods as the main tool to construct these measures. We also provide a suite of graphical displays by which they may be easily appreciated. In addition to providing some estimate of the reliability of specific forecasts of each type, these measures can also be used to guide future data collection to improve the effectiveness of the tree model. The motivating example we give has a binary response, namely the presence or absence of a species of Eucalypt, Eucalyptus cloeziana, at a given sampling location in response to a suite of environmental covariates, (although the methods are not restricted to binary response data).
Resumo:
The development of chronic symptoms following whiplash injury is common and contributes substantially to costs associated with this condition. The currently used Quebec Task Force classification system of whiplash associated disorders is primarily based on the severity of signs and symptoms following injury and its usefulness has been questioned. Recent evidence is emerging that demonstrates differences in physical and psychological impairments between individuals who recover from the injury and those who develop persistent pain and disability. Motor dysfunction, local cervical mechanical hyperalgesia and psychological distress are present soon after injury in all whiplash injured persons irrespective of recovery. In contrast those individuals who develop persistent moderate/severe pain and disability show a more complex picture, characterized by additional impairments of widespread sensory hypersensitivity indicative of underlying disturbances in central pain processing as well as acute posttraumatic stress reaction, with these changes present from soon after injury. Based on this heterogeneity a new classification system is proposed that takes into account measurable disturbances in motor, sensory and psychological dysfunction. The implications for the management of this condition are discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We compared within-population variability and degree of population differentiation for neutral genetic markers (RAPDS) and eight quantitative traits in Central American populations of the endangered tree, Cedrela odorata. Whilst population genetic diversity for neutral markers (Shannon index) and quantitative traits (heritability, coefficient of additive genetic variation) were uncorrelated, both marker types revealed strong differentiation between populations from the Atlantic coast of Costa Rica and the rest of the species' distribution. The degree of interpopulation differentiation was higher for RAPD markers (F-ST 0.67 for the sampled Mesoamerican range) than for quantitative traits (Q(ST) = 0.30). Hence, the divergence in quantitative traits was lower than could have been achieved by genetic drift alone, suggesting that balancing selection for similar phenotypes in different populations of this species. Nevertheless, a comparison of pair-wise estimates of population differentiation in neutral genetic markers and quantitative traits revealed a strong positive correlation (r = 0.66) suggesting that, for C. odorata, neutral marker divergence could be used as a surrogate for adaptive gene divergence for conservation planning. The utility of this finding and suggested further work are discussed.
Resumo:
Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef-building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent studies have warned that global climate change could increase the frequency of coral bleaching and threaten the long-term viability of coral reefs. These assertions are based on projecting the coarse output from atmosphere-ocean general circulation models (GCMs) to the local conditions around representative coral reefs. Here, we conduct the first comprehensive global assessment of coral bleaching under climate change by adapting the NOAA Coral Reef Watch bleaching prediction method to the output of a low- and high-climate sensitivity GCM. First, we develop and test algorithms for predicting mass coral bleaching with GCM-resolution sea surface temperatures for thousands of coral reefs, using a global coral reef map and 1985-2002 bleaching prediction data. We then use the algorithms to determine the frequency of coral bleaching and required thermal adaptation by corals and their endosymbionts under two different emissions scenarios. The results indicate that bleaching could become an annual or biannual event for the vast majority of the world's coral reefs in the next 30-50 years without an increase in thermal tolerance of 0.2-1.0 degrees C per decade. The geographic variability in required thermal adaptation found in each model and emissions scenario suggests that coral reefs in some regions, like Micronesia and western Polynesia, may be particularly vulnerable to climate change. Advances in modelling and monitoring will refine the forecast for individual reefs, but this assessment concludes that the global prognosis is unlikely to change without an accelerated effort to stabilize atmospheric greenhouse gas concentrations.
Resumo:
How can empirical evidence of adverse effects from exposure to noxious agents, which is often incomplete and uncertain, be used most appropriately to protect human health? We examine several important questions on the best uses of empirical evidence in regulatory risk management decision-making raised by the US Environmental Protection Agency (EPA)'s science-policy concerning uncertainty and variability in human health risk assessment. In our view, the US EPA (and other agencies that have adopted similar views of risk management) can often improve decision-making by decreasing reliance on default values and assumptions, particularly when causation is uncertain. This can be achieved by more fully exploiting decision-theoretic methods and criteria that explicitly account for uncertain, possibly conflicting scientific beliefs and that can be fully studied by advocates and adversaries of a policy choice, in administrative decision-making involving risk assessment. The substitution of decision-theoretic frameworks for default assumption-driven policies also allows stakeholder attitudes toward risk to be incorporated into policy debates, so that the public and risk managers can more explicitly identify the roles of risk-aversion or other attitudes toward risk and uncertainty in policy recommendations. Decision theory provides a sound scientific way explicitly to account for new knowledge and its effects on eventual policy choices. Although these improvements can complicate regulatory analyses, simplifying default assumptions can create substantial costs to society and can prematurely cut off consideration of new scientific insights (e.g., possible beneficial health effects from exposure to sufficiently low 'hormetic' doses of some agents). In many cases, the administrative burden of applying decision-analytic methods is likely to be more than offset by improved effectiveness of regulations in achieving desired goals. Because many foreign jurisdictions adopt US EPA reasoning and methods of risk analysis, it may be especially valuable to incorporate decision-theoretic principles that transcend local differences among jurisdictions.
Resumo:
In the early 21st century, we need to prepare university students to navigate local and global cultures effectively and sensitively. These future professionals must develop comprehensive intercultural communication skills and understanding. Yet university assessment in Australia is often based on a western template of knowledge, which automatically places International, Indigenous, as well as certain groups of local students at a study disadvantage. It also ensures that Australian students from dominant groups are not given the opportunity to develop these vital intercultural skills. This paper explores the issues embedded in themes 1 and 4 of this conference and provides details of an innovative website developed at Queensland University of Technology in Brisbane, Australia, which encourages academic staff to investigate the hidden assumptions that can underpin their assessment practices. The website also suggests strategies academics can use to ensure that their assessment becomes more socially and culturally responsive.