8 resultados para Listeria monocytogenes.

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Listeria monocytogenes has previously been shown to adapt to a wide variety of environmental niches, principally those associated with low pH, and this compromises its control in food environments. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. The present Study aimed to gain a further understanding of the physiological basis for the differential effects of one control strategy, namely the use of the lantibiotic nisin. Using propidium iodide (PI) to probe membrane integrity it was shown that L. monocytogenes Scott A was sensitive to nisin (8 ng mL(-1)) but this was growth phase dependent with stationary phase cells (OD600=1.2) being much more resistant than exponential phase cells (OD600=0.38). We demonstrate that, using a combination of techniques including fluorescence activated cell sorting (FACS), the membrane adaptations underpinning nisin resistance are triggered much earlier (OD600 < 0.5) than the onset of stationary phase. The significance of these findings in terms of mechanism and application are discussed. (c) 2005 Elsevier B.V.All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The comparative ability of different methods to assess virulence of Listeria species was investigated in ten Listeria strains. All strains were initially subjected to pulsed-field gel electrophoresis analysis to determine their relatedness. Virulence characteristics were subsequently tested for by (i) determining the presence of six virulence genes by polymerase chain reaction; (ii) testing for the production of listeriolysin O, phosphatidylcholine phospholipase C, and phosphatidylinositol-specific phospholipase C; (iii) investigating the hydrophobicity of the strains; (iv) determining the strains ability to attach to, enter, and replicate within the Caco-2 cells. Variations in most of the virulence characteristics were obvious across the strains for the range of tests performed. A wide range of anomalous results among methods were apparent. In particular, the presence of virulence genes was found to be unrelated to the production of virulence-associated proteins in vitro, while virulence protein production and hydrophobicity in Listeria monocytogenes were found to be unrelated or marginally related, respectively, to the ability to invade the Caco-2 cell line. It was concluded that the methods investigated were unable to consistently and unequivocally measure the differences in the virulence properties of the strains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plant antimicrobial peptide MiAMP1 from Macadamia integrifolia and the yeast killer toxin peptide WmKT from Williopsis mrakii are structural homologues. Comparative studies of yeast mutants were performed to test their sensitivity to these two antimicrobial peptides. No differences in susceptibility to MiAMP1 were detected between wild-type and several WmKT-resistant mutant yeast strains. A yeast mutant MT1, resistant to MiAMP1 but unaffected in its susceptibility to plant defensins and hydrogen peroxide, also did not show enhanced tolerance towards WmKT. It is therefore probable that the Greek key beta-barrel structure shared by MiAMP1 and WmKT provides a robust structural framework ensuring stability for the two proteins but that the specific action of the peptides depends on other motifs. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shiga toxigenic Escherichia coli (STEC) serotypes are important foodborne pathogens that cause gastrointestinal disease worldwide. An understanding of how STEC strains attach to surfaces may provide insight into the potential persistence of and contamination with STEC in food environments. The initial attachment of a selection of STEC serotypes to beef muscle and adipose tissue was evaluated for isolates grown in planktonic and sessile culture. Initial experiments were performed to determine whether attachment differed among STEC strains and between the two modes of growth. Viable counts were obtained for loosely and strongly attached cells, and the strength of attachment (S-r) was calculated. All bacterial isolates grown in sessile culture attached in higher numbers to muscle and adipose tissue than did bacteria in planktonic cultures. For all attachment assays performed, mean concentrations for loosely attached cells were consistently higher than concentrations for strongly attached cells. The mean concentrations for strongly attached bacteria for planktonic and sessile cultures were significantly higher (P < 0.05) on adipose than on muscle tissue. However, some strains of STEC, particularly those from sessile culture, did not differ in their attachment to muscle or adipose tissue. S-r values were not significantly different (P > 0.05) among STEC isolates for all assays. No correlation was found between bacterial hydrophobicity and surface charge values (previously determined) and production of surface structures, viable counts, and S-r values. STEC grown in planktonic and sessile culture seems to behave differently with respect to attachment to muscle and adipose tissue. Cells in sessile culture may have a greater potential to strongly attach to meat surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The antibacterial activities of water, ethanol and hexane extracts of five Australian herbs (Backhousia citriodora, Anetholea anisata, Eucalyptus staigerana, Eu. olida and Prostanthera incisa) against seven food-related bacteria (Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Enteritidis, Sal. Typhimurium and Staphylococcus aureus) were determined by the microtitre broth microdilution assay. The water extracts of all the herbs displayed no or low antimicrobial activity against all of the bacteria tested with the exception of S. aureus. Relatively high levels of activity (minimum inhibitory concentrations of 125-15.6 mu g ml(-1)) against this pathogen were present in water extracts from all herbs except P. incisa. The ethanol and hexane extracts of all herbs displayed some activity against a number of the bacteria tested, with no one particular herb displaying an obviously higher level or range of activity. Staphylococcus aureus proved to be the most sensitive of the bacteria tested against the solvent extracts with all extracts displaying activity ranging from 125 to 7.8 mu g ml(-1), while E. coli and L. monocytogenes, on the other hand, proved the least sensitive with only five of 15 herb/extract combinations displaying any activity against these pathogens. The extracts of the Australian native herbs examined in this study have potential for application in foods to increase shelf-life or promote safety. (c) 2005 Elsevier Ltd. All rights reserved.