11 resultados para Light-emitting diodes (LED)
em University of Queensland eSpace - Australia
Resumo:
Organic microcavity light emitting diodes typically exhibit a blue shift of the emitting wavelength with increasing viewing angle. While the wavelength shift can be reduced with the appropriate choice of organic materials and metal mirrors, for further reduction of the emission wavelength shift it is necessary to consider a mirror whose phase shift can partly compensate the effect of the change of optical path within the cavity. In this work, we used a genetic algorithm (GA) to design an asymmetric Bragg mirror in order to minimize the emission wavelength shift with viewing angle. Based on simulation results, the use of asymmetric Bragg mirrors represents a promising way to reduce the emission wavelength shift. Detailed comparison between GA optimized and conventional Bragg mirrors in terms of resonant wavelength dependence on the viewing angle, spectral narrowing, and brightness enhancement is given. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigate the emission of multimodal polarized light from light emitting devices due to spin-aligned carrier injection. The results are derived through operator Langevin equations, which include thermal and carrier-injection fluctuations, as well as nonradiative recombination and electronic g-factor temperature dependence. We study the dynamics of the optoelectronic processes and show how the temperature-dependent g factor and magnetic field affect the degree of polarization of the emitted light. In addition, at high temperatures, thermal fluctuation reduces the efficiency of the optoelectronic detection method for measuring the degree of spin polarization of carrier injection into nonmagnetic semicondutors.
Resumo:
Ion implantation can be used to confer electrical conductivity upon conventional insulating polymers such as polyetheretherketone (PEEK). We have implanted PEEK films using three different types of ion implantation: conventional inert gas and metal ion implantation, and ion beam mixing. We have applied a number of analytical techniques to compare the chemical, structural and electrical properties of these films. The most effective means of increasing electrical conductivity appears to be via ion beam mixing of metals into the polymer, followed by metal ion implantation and finally, inert gas ion implantation. Our results suggest that in all cases, the conducting region corresponds to the implanted layer in the near surface to a depth of similar to750 Angstrom (ion beam mixed) to similar to5000 Angstrom (metal ion). This latter value is significantly higher than would be expected from a purely ballistic standpoint, and can only be attributed to thermal inter-diffusion. Our data also indicates that graphitic carbon is formed within the implant region by chain scission and subsequent cross-linking. All ion implanted samples retained their bulk mechanical properties, i.e. they remained flexible. The implant layers showed no signs of de-lamination. We believe this to be the first comparative study between different implantation techniques, and our results support the proposition that soft electronic circuitry and devices can be created by conductivity engineering with ion beams. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The laser diode (LD) is a unique light source that can efficiently produce all radiant energy within the narrow wavelength range used most effectively by a photosynthetic microorganism. We have investigated the use of a single type of LID for the cultivation of the well-studied anoxygenic photosynthetic bacterium, Rhodobacter capsulatus (Rb. capsulatus). An array of vertical-cavity surface-emitting lasers (VCSELs) was driven with a current of 25 mA, and delivered radiation at 860 nm with 0.4 nm linewidth. The emitted light was found to be a suitable source of radiant energy for the cultivation of Rb. capsulatus. The dependence of growth rate on incident irradiance was quantified. Despite the unusual nearly monochromatic light source used in these experiments, no significant changes in the pigment composition and in the distribution of bacteriochlorophyll between LHII and LHI-RC were detected in bacterial cells transferred from incandescent light to laser light. We were also able to show that to achieve a given growth rate in a light-limited culture, the VCSEL required only 30% of the electricity needed by an incandescent bulb, which is of great significance for the potential use of laser-devices in biotechnological applications and photobioreactor construction. (c) 2006 Wiley Periodicals, Inc.
Resumo:
We optimized the emission efficiency from a microcavity OLEDs consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq(3)) as emitting and electron transporting layer. LiF/Al was considered as a cathode, while metallic Ag anode was used. TiO2 and Al2O3 layers were stacked on top of the cathode to alter the properties of the top mirror. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that for certain TiO2 and Al2O3 layer thicknesses, light output is enhanced as a result of the increase in both the reflectance and transmittance of the top mirror. Once the optimum structure has been determined, the microcavity OLED devices can be fabricated and characterized, and comparisons between experiments and theory can be made.
Resumo:
We report on the effect of the replacement of the conventional ITO anode with the semitransparent metallic material on the performance of microcavity OLEDs. We performed comprehensive simulations of the emission from microcavity OLEDs consisting of widely used organic materials, N,N′-di(naphthalene-1- yl)-N,N′-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq3) as emitting and electron transporting layer. Silver and LiF/Al were considered as a cathode, while metallic (Au and Ag) anode was used and simulations were performed on devices with both the metallic and conventional ITO anode. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that the metallic anode enhances light output and that optimum emission from a microcavity OLED is achieved when the position of the recombination region is aligned with the antinode of the standing wave inside the cavity. The microcavity OLED devices with Ag/Ag and Ag/Au mirrors were fabricated and characterized. The experimental results have been compared to the simulations and the influence of the different anode, emission region width and position on the performance of microcavity OLEDs was discussed.
Resumo:
The following topics were dealt with: semiconductor growth (MBE, PECVD, MOCVD, MOVPE) and characterizations; high-electron mobility transistors (HEMTs); microcavity organic light emitting diode (MOLED); semiconductor superlattices; photodiode arrays; MEMS structures; lithography;semiconductor lasers; semiconductor optical amplifiers; surface treatment and annealing
Resumo:
Objectives. This study examined the depth of cure and surface microhardness of Filtek Z250 composite resin (3M-Espe) (shades B1, A3, and C4) when cured with three commercially available tight emitting diode (LED) curing lights [E-light (GC), Elipar Freelight (3M-ESPE), 475H (RF Lab Systems)], compared with a high intensity quartz tungsten halogen (HQTH) light (Kerr Demetron Optilux 501) and a conventional quartz tungsten halogen (QTH) lamp (Sirona S1 dental unit). Methods. The effects of light source and resin shade were evaluated as independent variables. Depth of cure after 40 s of exposure was determined using the ISO 4049:2000 method, and Vickers hardness determined at 1.0 mm intervals. Results. HQTH and QTH lamps gave the greatest depth of cure. The three LED lights showed similar performances across all parameters, and each unit exceeded the ISO standard for depth of cure except GC ELight for shade B1. In terms of shade, LED lights gave greater curing depths with A3 shade, while QTH and HQTH tights gave greater curing depths with C4 shade. Hardness at the resin surface was not significantly different between LED and conventional curing lights, however, below the surface, hardness reduced more rapidly for the LED lights, especially at depths beyond 3 mm. Significance. Since the performance of the three LED lights meets the ISO standard for depth of cure, these systems appear suitable for routine clinical application for resin curing. (C) 2003 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.