7 resultados para Light intensity

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cone photoreceptors of many vertebrates contain spherical organelles called oil droplets. In birds, turtles, lizards and some lungfish the oil droplets are heavily pigmented and function to filter the spectrum of light incident upon the visual pigment within the outer segment. Pigmented oil droplets are beneficial for colour discrimination in bright light, but at lower light levels the reduction in sensitivity caused by the pigmentation increasingly outweighs the benefits generated by spectral tuning. Consequently, it is expected that species with pigmented oil droplets should modulate the density of pigment in response to ambient light intensity and thereby regulate the amount of light transmitted to the outer segment. In this study, microspectrophotometry was used to measure the absorption spectra of cone oil droplets in chickens (Gallus gallus domesticus) reared under bright (unfiltered) or dim (filtered) sunlight. Oil droplet pigmentation was found to be dependent on the intensity of the ambient light and the duration of exposure to the different lighting treatments. In adult chickens reared in bright light, the oil droplets of all cone types (except the violet-sensitive single cones, whose oil droplet is always non-pigmented) were more densely pigmented than those in chickens reared in dim light. Calculations show that the reduced levels of oil droplet pigmentation in chickens reared in dim light would increase the sensitivity and spectral bandwidth of the outer segment significantly. The density of pigmentation in the oil droplets presumably represents a trade-off between the need for good colour discrimination and absolute sensitivity. This might also explain why nocturnal animals, or those that underwent a nocturnal phase during their evolution, have evolved oil droplets with low pigment densities or no pigmentation or have lost their oil droplets altogether.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hermatypic-zooxanthellate corals track the diel patterns of the main environmental parameters temperature, UV and visible light - by acclimation processes that include biochemical responses. The diel course of solar radiation is followed by photosynthesis rates and thereby elicits simultaneous changes in tissue oxygen tension due to the shift in photosynthesis/respiration balance. The recurrent patterns of sunlight are reflected in fluorescence yields, photosynthetic pigment content and activity of the two protective enzymes superoxide dismutase (SOD) and catalase (CAT), enzymes that are among the universal defenses against free radical damage in living tissue. All of these were investigated in three scleractinian corals: Favia favus, Plerogyra sinuosa and Goniopora lobata. The activity of SOD and CAT in the animal host followed the course of solar radiation, increased with the rates of photosynthetic oxygen production and was correlated with a decrease in the maximum quantum yield of photochemistry in Photosystem H (PSII) (Delta F'/F-m'). SOD and CAT activity in the symbiotic algae also exhibited a light intensity correlated pattern, albeit a less pronounced one. The observed rise of the free-radical-scavenger enzymes, with a time scale of minutes to several hours, is an important protective mechanism for the existence and remarkable success of the unique cnidarian-dinoflagellate associations, in which photosynthetic oxygen production takes place within animal cells. This represents a facet of the precarious act of balancing the photosynthetic production of oxygen by the algal symbionts with their destructive action on all living cells, especially those of the animal host.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various factors affecting N-2 fixation of a cultured strain of Trichodesmium sp. (GBRTRLI101) from the Great Barrier Reef Lagoon were investigated. The diurnal pattern of N2 fixation demonstrated that it was primarily light-induced although fixation continued to occur for at least 1 h in the dark in samples that had been actively fixing N-2. N-2 fixation was dependent on the light intensity and stimulated more by white light when compared with blue, green, yellow and red light whereas rates of N-2 fixation decreased most under red light. Inorganic phosphorous concentrations in the lower range of treatments up to 1.2 muM significantly stimulated N-2 fixation and further additions promoted little or no increase in N-2 fixation. Organic phosphorous (Na-glycerophosphate) also stimulated N-2 fixation rates. Added combined nitrogen (NH4+, NO3-, urea) of 10 muM did not inhibit N-2 fixation in short-term studies (first generation), however it was depressed in the long-term studies (fifth generation). (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium which can produce akinetes (reproductive spores) that on germinating can contribute to future populations. To further understand factors controlling the formation of these specialised cells, the effects of diurnal temperature fluctuations (magnitude and frequency), in combination with different light intensities and phosphorus concentrations were investigated under laboratory conditions. 2. Akinete differentiation was affected by the frequency of temperature fluctuations. Maximum akinete concentrations were observed in cultures that experienced multiple diurnal temperature fluctuations. 3. Akinete concentrations increased with increasing magnitude of temperature fluctuation. A maximum akinete concentration was achieved under multiple diurnal temperature fluctuations with a magnitude of 10degreesC (25degreesC to 15degreesC). 4. A fourfold increase in light intensity (25-100 mumol m(-2) s(-1)) resulted in an approximate 14-fold increase in akinete concentration. 5. High filterable reactive phosphorus (FRP) concentrations (> 70 mug L-1) in the medium, combined with a multiple diurnal temperature fluctuation of 10degreesC, supported the development of the highest akinete concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e(-)), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e(-) to drive hydrogen (H-2) production via the chloroplast hydrogenases HydA1 and A2 (H(2)ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H-2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H-2 production in Chlamydomonas, we have developed a new approach to increase H+ and e(-) supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e(-) transfer around photosystem I, eliminating possible competition for e(-) with H(2)ase. Selected strains were further screened for increased H-2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves ( i.e. enhanced substrate availability), and a low dissolved O-2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H-2 production rates of Stm6 were 5 - 13 times that of the control WT strain over a range of conditions ( light intensity, culture time, +/- uncoupler). Typically, similar to 540 ml of H-2 liter(-1) culture ( up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h(-1) ( efficiency = similar to 5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H-2 production systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluorescence spectrophotometry can reliably detect levels of the pteridine 6-biopterin in the heads of individual Drosophila serrata Malloch 1927. Pteridine content in both laboratory and field captured flies is typically a level of magnitude higher than the minimally detectable level (mean(lab)=0.54 units, mean(field)=0.44 units, minimum detectable level=0.01 units) and can be used to predict individual age in laboratory populations with high certainty (r(2)=57%). Laboratory studies of individuals of known age ( from 1 to 48 days old) indicate that while pteridine level increases linearly with age, they also increase in a linear manner with rearing temperature and ambient light levels, but are independent of sex. As expected, the longevity of laboratory-reared males ( at least 48 days) is higher than the range of predicted ages of wild-caught males based on individual pteridine levels (40 days). However, the predictive equation based on pteridine level alone suggested that a number of wild-caught males were less than 0 days old, and the 95% confidence for these predictions based on the inverse regression broad. The age of the oldest wild-caught male is to fall within the range of 2 to 50 days. The effects of temperature and light intensity determined in laboratory study (effect sizes omega(2)=14.3 and respectively) suggests that the calibration of the prediction equation for field populations would significantly improved when combined with fine scaled studies of habitat temperature and light conditions. ability to determine relative age in individual wild-caught D. serrata presents great opportunities for a variety evolutionary studies on the dynamics of populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R-24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R-24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R-2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R-24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.