7 resultados para Light absorption technique
em University of Queensland eSpace - Australia
Resumo:
Iodine-doped (I-doped) mesoporous titania with a bicrystalline (anatase and rutile) framework was synthesized by a two-step template hydrothermal synthesis route. I-doped titania with anatase structure was also synthesized without the use of a block copolymer as a template. The resultant titania samples were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared, nitrogen adsorption, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible absorption spectroscopy. Both I-doped titania samples, with and without template, show much better photocatalytic activity than commercial P25 titania in the photodegradation of methylene blue under the irradiation of visible light (> 420 nm) and UV-visible light. Furthermore, I-doped mesoporous titania with a bicrystalline framework exhibits better activity than I-doped titania with anatase structure. The effect of rutile phase in titania on the adsorptive capacity of water and surface hydroxyl, and photocatalytic activity was investigated in detail. The excellent performance of I-doped mesoporous titania under both visible light and UV-visible light can be attributed to the combined effects of bicrystalline framework, high crystallinity, large surface area, mesoporous structure, and high visible light absorption induced by I-doping.
Resumo:
Niobium pentoxide reacts actively with concentrate NaOH solution under hydrothermal conditions at as low as 120 degrees C. The reaction ruptures the corner-sharing of NbO7 decahedra and NbO6 octahedra in the reactant Nb2O5, yielding various niobates, and the structure and composition of the niobates depend on the reaction temperature and time. The morphological evolution of the solid products in the reaction at 180 degrees C is monitored via SEM: the fine Nb2O5 powder aggregates first to irregular bars, and then niobate fibers with an aspect ratio of hundreds form. The fibers are microporous molecular sieve with a monoclinic lattice, Na2Nb2O6 center dot(2)/3H2O. The fibers are a metastable intermediate of this reaction, and they completely convert to the final product NaNbO3 Cubes in the prolonged reaction of 1 h. This study demonstrates that by carefully optimizing the reaction condition, we can selectively fabricate niobate structures of high purity, including the delicate microporous fibers, through a direct reaction between concentrated NaOH solution and Nb2O5. This synthesis route is simple and suitable for the large-scale production of the fibers. The reaction first yields poorly crystallized niobates consisting of edge-sharing NbO6 octahedra, and then the microporous fibers crystallize and grow by assembling NbO6 octahedra or clusters of NbO6 octahedra and NaO6 units. Thus, the selection of the fibril or cubic product is achieved by control of reaction kinetics. Finally, niobates with different structures exhibit remarkable differences in light absorption and photoluminescence properties. Therefore, this study is of importance for developing new functional materials by the wet-chemistry process.
Resumo:
The development of solutions that prevent dehydration or promote adequate re-hydration play a vital role in preventing fatigue during exercise, however, the methods commonly used to assess the hydration ability of such solutions are invasive and often assess the components of absorption separately. This paper describes using a non-invasive deuterium tracer technique that assesses gastric emptying and intestinal absorption simultaneously to evaluate the uptake of water during rest and exercise. The kinetics of absorption are further examined by mathematical modelling of the data generated. For the rest group, 0.05 g/kg of body weight of deuterium, contained in gelatine capsules, was ingested with ordinary tap water and saliva samples were collected every 5 min for one hour while the subject remained seated. The deuterium was administered as above for the exercise group but sample collection was during one hour of exercise on a treadmill at 55% of the subject's maximum heart rate. The enrichment data for each subject were mathematically modelled and the parameters obtained were compared across groups using an independent samples t-test. Compared with the rest condition, the exercise group showed delayed absorption of water as indicated by significant differences for the modelling parameters t(2), t(1/2), maximum absorption rate and solution absorption amount at t(1). Labelling with a deuterium tracer is a good measure of the relative rate ingested fluids are absorbed by the body. Mathematical modelling of the data generates rates of maximum absorption and allows calculation of the percentage of the solution that is absorbed at any given time during the testing period. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The cone photoreceptors of many vertebrates contain spherical organelles called oil droplets. In birds, turtles, lizards and some lungfish the oil droplets are heavily pigmented and function to filter the spectrum of light incident upon the visual pigment within the outer segment. Pigmented oil droplets are beneficial for colour discrimination in bright light, but at lower light levels the reduction in sensitivity caused by the pigmentation increasingly outweighs the benefits generated by spectral tuning. Consequently, it is expected that species with pigmented oil droplets should modulate the density of pigment in response to ambient light intensity and thereby regulate the amount of light transmitted to the outer segment. In this study, microspectrophotometry was used to measure the absorption spectra of cone oil droplets in chickens (Gallus gallus domesticus) reared under bright (unfiltered) or dim (filtered) sunlight. Oil droplet pigmentation was found to be dependent on the intensity of the ambient light and the duration of exposure to the different lighting treatments. In adult chickens reared in bright light, the oil droplets of all cone types (except the violet-sensitive single cones, whose oil droplet is always non-pigmented) were more densely pigmented than those in chickens reared in dim light. Calculations show that the reduced levels of oil droplet pigmentation in chickens reared in dim light would increase the sensitivity and spectral bandwidth of the outer segment significantly. The density of pigmentation in the oil droplets presumably represents a trade-off between the need for good colour discrimination and absolute sensitivity. This might also explain why nocturnal animals, or those that underwent a nocturnal phase during their evolution, have evolved oil droplets with low pigment densities or no pigmentation or have lost their oil droplets altogether.
Resumo:
We present a technique to measure the viscosity of microscopic volumes of liquid using rotating optical tweezers. The technique can be used when only microlitre (or less) sample volumes are available, for example biological or medical samples, or to make local measurements in complicated micro-structures such as cells. The rotation of the optical tweezers is achieved using the polarisation of the trapping light to rotate a trapped birefringent spherical crystal, called vaterite. Transfer of angular momentum from a circularly polarised beam to the particle causes the rotation. The transmitted light can then be analysed to determine the applied torque to the particle and its rotation rate. The applied torque is determined from the change in the circular polarisation of the beam caused by the vaterite and the rotation rate is used to find the viscous drag on the rotating spherical particle. The viscosity of the surrounding liquid can then be determined. Using this technique we measured the viscosity of liquids at room temperature, which agree well with tabulated values. We also study the local heating effects due to absorption of the trapping laser beam. We report heating of 50-70 K/W in the region of liquid surrounding the particle.