59 resultados para Lie Symmetries
em University of Queensland eSpace - Australia
Resumo:
In the usual formulation of quantum mechanics, groups of automorphisms of quantum states have ray representations by unitary and antiunitary operators on complex Hilbert space, in accordance with Wigner's theorem. In the phase-space formulation, they have real, true unitary representations in the space of square-integrable functions on phase space. Each such phase-space representation is a Weyl–Wigner product of the corresponding Hilbert space representation with its contragredient, and these can be recovered by 'factorizing' the Weyl–Wigner product. However, not every real, unitary representation on phase space corresponds to a group of automorphisms, so not every such representation is in the form of a Weyl–Wigner product and can be factorized. The conditions under which this is possible are examined. Examples are presented.
Resumo:
The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q = 1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint --> adjoint We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B-l, C-l and D-l. In the quantum case the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.
Resumo:
We extend the results of spin ladder models associated with the Lie algebras su(2(n)) to the case of the orthogonal and symplectic algebras o(2(n)), sp(2(n)) where n is the number of legs for the system. Two classes of models are found whose symmetry, either orthogonal or symplectic, has an explicit n dependence. Integrability of these models is shown for an arbitrary coupling of XX-type rung interactions and applied magnetic field term.
Resumo:
Quantum Lie algebras are generalizations of Lie algebras which have the quantum parameter h built into their structure. They have been defined concretely as certain submodules L-h(g) of the quantized enveloping algebras U-h(g). On them the quantum Lie product is given by the quantum adjoint action. Here we define for any finite-dimensional simple complex Lie algebra g an abstract quantum Lie algebra g(h) independent of any concrete realization. Its h-dependent structure constants are given in terms of inverse quantum Clebsch-Gordan coefficients. We then show that all concrete quantum Lie algebras L-h(g) are isomorphic to an abstract quantum Lie algebra g(h). In this way we prove two important properties of quantum Lie algebras: 1) all quantum Lie algebras L-h(g) associated to the same g are isomorphic, 2) the quantum Lie product of any Ch(B) is q-antisymmetric. We also describe a construction of L-h(g) which establishes their existence.
Resumo:
We introduce an integrable model for two coupled BCS systems through a solution of the Yang-Baxter equation associated with the Lie algebra su(4). By employing the algebraic Bethe ansatz, we determine the exact solution for the energy spectrum. An asymptotic analysis is conducted to determine the leading terms in the ground state energy, the gap and some one point correlation functions at zero temperature. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize its entanglement, so that a first subspace is more entangled than a second, if the Schmidt string of the second majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings.
Resumo:
Braided m-Lie algebras induced by multiplication are introduced, which generalize Lie algebras, Lie color algebras and quantum Lie algebras. The necessary and sufficient conditions for the braided m-Lie algebras to be strict Jacobi braided Lie algebras are given. Two classes of braided m-Lie algebras are given, which are generalized matrix braided m-Lie algebras and braided m-Lie subalgebras of End(F)M, where M is a Yetter-Drinfeld module over B with dimB < infinity. In particular, generalized classical braided m-Lie algebras sl(q,f)(GM(G)(A),F) and osp(q,l)(GM(G)(A),M,F) of generalized matrix algebra GMG(A) are constructed and their connection with special generalized matrix Lie superalgebra sl(s,f)(GM(Z2)(A(s)),F) and orthosymplectic generalized matrix Lie super algebra osp(s,l) (GM(Z2)(A(s)),M-s,F) are established. The relationship between representations of braided m-Lie algebras and their associated algebras are established.
Resumo:
Complex numbers appear in the Hilbert space formulation of quantum mechanics, but not in the formulation in phase space. Quantum symmetries are described by complex, unitary or antiunitary operators defining ray representations in Hilbert space, whereas in phase space they are described by real, true representations. Equivalence of the formulations requires that the former representations can be obtained from the latter and vice versa. Examples are given. Equivalence of the two formulations also requires that complex superpositions of state vectors can be described in the phase space formulation, and it is shown that this leads to a nonlinear superposition principle for orthogonal, pure-state Wigner functions. It is concluded that the use of complex numbers in quantum mechanics can be regarded as a computational device to simplify calculations, as in all other applications of mathematics to physical phenomena.
Resumo:
The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean-field approximation. This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points, and our analysis shows that the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current states are also demonstrated as one of the higher-dimensional effects displayed in this system.
Resumo:
Architecture of the Pacific covers a region of more than third of the earth’s surface. The sparse Pacific population spreads over some 30 000 islands, which graduate in size from small atolls to the largest island, Australia, a continent. Pacific architecture can be studied as four cultural units: Micronesia, Polynesia, Melanesia, and Australasia (Australia and New Zealand). While many of the islands of Micronesia lie above the Equator, the remaining Pacific islands are in the southern hemisphere. With the exception of Australia, most of the islands have a warm and humid tropical climate with high rainfalls and lush vegetation. Some islands lie in the cyclonic and earthquake belts. Two distinct racial groups settled the region. The indigenous people, the Micronesians, Melanesians, Polynesians, Australian Aborigines and New Zealand Maoris, migrated from Asia thousands of years ago. The second group, the recent immigrants, were Europeans, who occupied the region during the last two centuries, and pockets of Asians brought in by colonial administrations as labourers during the early twentieth century.
Resumo:
A major challenge in successfully implementing transit-oriented development (TOD) is having a robust process that ensures effective appraisal, initiation and delivery of multi-stakeholder TOD projects. A step-by step project development process can assist in the methodic design, evaluation, and initiation of TOD projects. Successful TOD requires attention to transit, mixed-use development and public space. Brisbane, Australia provides a case-study where recent planning policies and infrastructure documents have laid a foundation for TOD, but where barriers lie in precinct level planning and project implementation. In this context and perhaps in others, the research effort needs to shift toward identification of appropriate project processes and strategies. This paper presents the outcomes of research conducted to date. Drawing on the mainstream approach to project development and financial evaluation for property projects, key steps for potential use in successful delivery of TOD projects have been identified, including: establish the framework; location selection; precinct context review; preliminary precinct design; the initial financial viability study; the decision stage; establishment of project structure; land acquisition; development application; and project delivery. The appropriateness of this mainstream development and appraisal process will be tested through stakeholder research, and the proposed process will then be refined for adoption in TOD projects. It is suggested that the criteria for successful TOD should be broadened beyond financial concerns in order to deliver public sector support for project initiation.
Resumo:
Using Reshetikhin's construction for multiparametric quantum algebras we obtain the associated multiparametric quantum spin chains. We show that under certain restrictions these models can be mapped to quantum spin chains with twisted boundary conditions, We illustrate how this general formalism applier; to construct multiparametric versions of the supersymmetric t-J and Li models.