34 resultados para Library administration.
em University of Queensland eSpace - Australia
Resumo:
Aim To develop a population pharmacokinetic model for mycophenolic acid in adult kidney transplant recipients, quantifying average population pharmacokinetic parameter values, and between- and within-subject variability and to evaluate the influence of covariates on the pharmacokinetic variability. Methods Pharmacokinetic data for mycophenolic acid and covariate information were previously available from 22 patients who underwent kidney transplantation at the Princess Alexandra Hospital. All patients received mycophenolate mofetil 1 g orally twice daily. A total of 557 concentration-time points were available. Data were analysed using the first-order method in NONMEM (version 5 level 1.1) using the G77 FORTRAN compiler. Results The best base model was a two-compartment model with a lag time (apparent oral clearance was 271 h(-1), and apparent volume of the central compartment 981). There was visual evidence of complex absorption and time-dependent clearance processes, but they could not be successfully modelled in this study. Weight was investigated as a covariate, but no significant relationship was determined. Conclusions The complexity in determining the pharmacokinetics of mycophenolic acid is currently underestimated. More complex pharmacokinetic models, though not supported by the limited data collected for this study, may prove useful in the future. The large between-subject and between-occasion variability and the possibility of nonlinear processes associated with the pharmacokinetics of mycophenolic acid raise questions about the value of the use of therapeutic monitoring and limited sampling strategies.
Resumo:
This paper is based on 'The perennial ugly duckling-public sector education in tertiary institutions before and after Coombs, an invited contribution on management education delivered at the Sydney Academics Symposium on the Coombs Commission in Retrospect, IPAA National Conference, 28 November 2001.
Resumo:
Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 mumol/kg body weight, i.p.) of cadmium chloride (CdCl2). Total CYP content of liver and kidney microsomes decreased maximally (56% and 85%, respectively) 24 and 18 h, respectively, after CdCl2 treatment. Progressive increases of hepatic coumarin 7-hydroxylase (COH) activity; indicative of CYP2A5 activity, relative to the total CYP content were seen at 8 h (2-fold), 12 h (3-fold), 18 h (12-fold), and 24 h (15-fold). Similar changes were seen in the kidney. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 h after treatment and decreased to almost half 6 h later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 h. The CYP2A5 mRNA levels in the kidney and liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 -/- mouse. This study demonstrates that hepatic and kidney CYP2A5 is upregulated by cadmium with a somewhat faster response in the kidney than the liver. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed decrease in the mRNA but not in protein levels after maximal induction may suggest involvement of post-trancriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 -/- mice indicates a role for this transcription factor in the regulation. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 Amol/kg body weight, i.p.) of cadmium chloride (CdCl2) at various time points. The total CYP content of kidney microsomes started to decrease 4 hours earlier than in the liver (P < 0.05), with maximal decreases at 24 hours of 56% and 85% in the liver and kidney, respectively. In contrast, both hepatic and renal coumarin 7-hydroxylase (COH) activity (indicative of CYP2A5 activity) relative to total CYP content started to progressively increase at 8 hours, with renal activity 61 times higher than the hepatic activity. Maximum increases were observed, 15-fold in the liver and 64-fold in the kidney after 24 hours. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 hours after treatment, respectively and decreased to almost half 6 hours later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 hours. This study demonstrates that hepatic and renal CYP2A5 is upregulated by cadmium with a faster response in the kidney than in the liver. This observation is concordant with the fact that kidney is the target organ for cadmium toxicity. The observed increase in the mRNA but not in protein levels after maximal induction suggests involvement of post-transcriptional mechanisms in the regulation of CYP2A5 expression by cadmium.
Resumo:
Aims To investigate the concentration-effect relationship and pharmacokinetics of leflunomide in patients with rheumatoid arthritis (RA). Methods Data were collected from 23 RA patients on leflunomide therapy (as sole disease modifying antirheumatic drug (DMARD)) for at least 3 months. Main measures were A77 1726 (active metabolite of leflunomide) plasma concentrations and disease activity measures including pain, duration/intensity of morning stiffness, and SF-36 survey. A population estimate was sought for apparent clearance (CL/F ) and volume of distribution was fixed (0.155 l kg(-1)). Factors screened for influence on CL/F were weight, age, gender and estimated creatinine clearance. Results Significantly higher A77 1726 concentrations were seen in patients with less swollen joints and with higher SF-36 mental summary scores than in those with measures indicating more active disease (P < 0.05); concentration-effect trends were seen with five other disease activity measures. Statistical analysis of all disease activity measures showed that mean A77 1726 concentrations in groups with greater control of disease activity were significantly higher than those in whom the measures indicated less desirable control (P < 0.05). There was large between subject variability in the dose-concentration relationship. A steady-state infusion model best described the pharmacokinetic data. Inclusion of age as a covariate decreased interindividual variability (P < 0.01), but this would not be clinically important in terms of dosage changes. Final parameter estimate (% CV interindividual variability) for CL/F was 0.0184 l h(-1) (50%) (95% CI 0.0146, 0.0222). Residual (unexplained) variability (% CV) was 8.5%. Conclusions This study of leflunomide in patients using the drug clinically indicated a concentration-effect relationship. From our data, a plasma A77 1726 concentration of 50 mg l(-1) is more likely to indicate someone with less active disease than is a concentration around 30 mg l(-1). The marked variability in pharmacokinetics suggests a place for individualized dosing of leflunomide in RA therapy.
Resumo:
Orally administered live Lactobacillus acidophilus was assessed for its capacity to enhance clearance from the oral cavity of DBA/2 mice shown previously to be 'infection prone'. L. acidophilus fed to DBA/2 mice significantly shortened the duration of colonization of the oral cavity compared to controls. Enhanced clearance of Candida albicans correlated with both early mRNA gene expression for interleukin (IL)-4 and interferon (IFN)-gamma and expression of their secreted products in cultures of cervical lymph nodes stimulated with Candida antigen. In addition rapid clearance correlated with higher levels of IFN-gamma and nitric oxide in saliva. Delayed clearance, less pronounced levels of the cytokine response, saliva IFN-gamma and nitric oxide, and later mRNA expression for IL-4 and IFN-gamma relative to feeding with the L. acidophilus isolate were noted in mice fed a different Lactobacillus isolate (L. fermentum). These observations indicate significant variations in individual isolates to activate the common mucosal system.
Resumo:
Background: Intravenous (IV) fluid administration is an integral component of clinical care. Errors in administration can cause detrimental patient outcomes and increase healthcare costs, although little is known about medication administration errors associated with continuous IV infusions. Objectives: ( 1) To ascertain the prevalence of medication administration errors for continuous IV infusions and identify the variables that caused them. ( 2) To quantify the probability of errors by fitting a logistic regression model to the data. Methods: A prospective study was conducted on three surgical wards at a teaching hospital in Australia. All study participants received continuous infusions of IV fluids. Parenteral nutrition and non-electrolyte containing intermittent drug infusions ( such as antibiotics) were excluded. Medication administration errors and contributing variables were documented using a direct observational approach. Results: Six hundred and eighty seven observations were made, with 124 (18.0%) having at least one medication administration error. The most common error observed was wrong administration rate. The median deviation from the prescribed rate was 247 ml/h (interquartile range 275 to + 33.8 ml/ h). Errors were more likely to occur if an IV infusion control device was not used and as the duration of the infusion increased. Conclusions: Administration errors involving continuous IV infusions occur frequently. They could be reduced by more common use of IV infusion control devices and regular checking of administration rates.
Resumo:
Serotonin (5-hydroxytryptamine, 5-HT) is an amine neurotransmitter derived from tryptophan and is important in brain systems regulating mood, emotional behavior, and sleep. Selective serotonin reuptake inhibitor (SSRI) drugs are used to treat disorders such as depression, stress, eating disorders, autism, and schizophrenia. It is thought that these drugs act to prolong the action of 5-HT by blocking reuptake. This may lead to decreased 5-HT content in the nerve fibers themselves; however, this has not previously been directly demonstrated. We have studied the effects of administration of two drugs, imipramine and citalopram, on levels of 5-HT in nerve fibers in the murine brain. Quantitative analysis of the areal density of 5-HT fibers throughout the brain was performed using ImageJ software. While a high density of fibers was observed in mid- and hind-brain regions and areas such as thalamus and hypothalamus, densities were far lower in areas such as cortex, where SSRIs might be thought to exert their actions. As anticipated, imipramine and citalopram produced a decline in 5-HT levels in nerve fibers, but the result was not uniform. Areas such as inferior colliculus showed significant reduction whereas little, if any, change was observed in the adjacent superior colliculus. The reason for, and significance of, this regionality is unclear. It has been proposed that serotonin effects in the brain might be linked to changes in glutamatergic transmission. Extracellular glutamate levels are regulated primarily by glial glutamate transporters. Qualitative evaluation of glutamate transporter immunolabeling in cortex of control and drug-treated mice revealed no discernable difference in intensity of glutamate transporter immunoreactivity. These data suggest that changes in intracellular and extracellular levels of serotonin do not cause concomitant changes in astroglial glutamate transporter expression, and thus cannot represent a mechanism for the delayed efficacy of antidepressants when administered clinically. © 2005 Elsevier B.V. All rights reserved.
Resumo:
To determine the clinical effect of systemic carboplatin administration in birds, 6 sulphur-crested cockatoos (Cacatua galerita) were anesthetized and infused intravenously or intraosseously with carboplatin at 5 mg/kg over 3 minutes. Four birds were euthanatized 96 hours after infusion and 2 birds given an intravenous dose were euthanatized 21 days after dosing. All birds tolerated the anesthesia and carboplatin infusion and recovered uneventfully. At 24 hours after dosing, all birds were bright and active. Within 12 hours of dosing, feed intake was reduced and 3 birds vomited, but these signs abated by 48 hours after dosing. Mean body weight decreased by 4% at 24 hours after dosing and continued to decrease, but not significantly, until 96 hours after dosing. Changes in packed cell volume (PCV) and plasma total solids reflected blood loss caused by sampling. The mean PCV decreased significantly by 6 hours after dosing, and the concentration of plasma total solids decreased significantly at 1 hour after dosing and continued to decrease until 12 hours after dosing before progressively and significantly increasing toward baseline values by 96 hours after dosing. At necropsy, myelosuppression was not observed in any bird and no evidence of carboplatin toxicity was found. These results provide veterinarians with useful data for formulating efficacious and safe protocols for platinum-containing compounds when treating neoplasia in parrots and other companion birds.
Resumo:
Aims: Previous immunohistochemical studies have shown that the post-translational formation of aldehyde-protein adducts may be an important process in the aetiology of alcohol-induced muscle disease. However, other studies have shown that in a variety of tissues, alcohol induces the formation of various other adduct species, including hybrid acetaldehyde-malondialdehyde-protein adducts and adducts with free radicals themselves, e.g. hydroxyethyl radical (HER)-protein adducts. Furthermore, acetaldehyde-protein adducts may be formed in reducing or non-reducing environments resulting in distinct molecular entities, each with unique features of stability and immunogenicity. Some in vitro studies have also suggested that unreduced adducts may be converted to reduced adducts in situ. Our objective was to test the hypothesis that in muscle a variety of different adduct species are formed after acute alcohol exposure and that unreduced adducts predominate. Methods: Rabbit polyclonal antibodies were raised against unreduced and reduced aldehydes and the HER-protein adducts. These were used to assay different adduct species in soleus (type I fibre-predominant) and plantaris (type II fibre-predominant) muscles and liver in four groups of rats administered acutely with either [A] saline (control); [B] cyanamide (an aldehyde dehydrogenase inhibitor); [C] ethanol; [D] cyanamide+ethanol. Results: Amounts of unreduced acetaldehyde and malondialdehyde adducts were increased in both muscles of alcohol-dosed rats. However there was no increase in the amounts of reduced acetaldehyde adducts, as detected by both the rabbit polyclonal antibody and the RT1.1 mouse monoclonal antibody. Furthermore, there was no detectable increase in malondialdehyde-acetaldehyde and HER-protein adducts. Similar results were obtained in the liver. Conclusions: Adducts formed in skeletal muscle and liver of rats exposed acutely to ethanol are mainly unreduced acetaldehyde and malondialdehyde species.