8 resultados para LiDAR, sequenze pseudocasuali, Linear-feedback schist register, cross correlation

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm for suppressing the chaotic oscillations in non-linear dynamical systems with singular Jacobian matrices is developed using a linear feedback control law based upon the Lyapunov-Krasovskii (LK) method. It appears that the LK method can serve effectively as a generalised method for the suppression of chaotic oscillations for a wide range of systems. Based on this method, the resulting conditions for undisturbed motions to be locally or globally stable are sufficient and conservative. The generalized Lorenz system and disturbed gyrostat equations are exemplified for the validation of the proposed feedback control rule. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatio-temporal maps of the occipital cortex of macaque monkeys were analyzed using optical imaging of intrinsic signals. The images obtained during localized visual stimulation (IS) were compared with the images obtained on presentation of a blank screen (IB). We first investigated spontaneous variations of the intrinsic signals by analyzing the 100 IBs for each of the three cortical areas. Slow periodical activation was observed in alternation over the cortical areas. Cross-correlation analysis indicated that synchronization of spontaneous activation only took place within each cortical area, but not between them. When a small, drifting grating (2degreesX2degrees) was presented on the fovea. a dark spot appeared in the optical image at the cortical representation of this retinal location. It spread bilaterally along the border between V1 and V2, continuing as a number of parallel dark bands covering a large area of the lateral surface of V1. Cross-correlation analysis showed that during visual stimulation the intrinsic signals over all of the three cortical areas were synchronized, with in-phase activation of V1 and V2 and anti-phase activation of V4 and V1/V2. The significance of these extensive synergistic and antagonistic interactions between different cortical areas is discussed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultivation technologies promoting organization of mammalian cells in three dimensions are essential for gene-function analyses as well as drug testing and represent the first step toward the design of tissue replacements and bioartificial organs. Embedded in a three-dimensional environment, cells are expected to develop tissue-like higher order intercellular structures (cell-cell contacts, extracellular matrix) that orchestrate cellular functions including proliferation, differentiation, apoptosis, and angiogenesis with unmatched quality. We have refined the hanging drop cultivation technology to pioneer beating heart microtissues derived from pure primary rat and mouse cardiomyocyte cultures as well as mixed populations reflecting the cell type composition of rodent hearts. Phenotypic characterization combined with detailed analysis of muscle-specific cell traits, extracellular matrix components, as well as endogenous vascular endothelial growth factor (VEGF) expression profiles of heart microtissues revealed (1) a linear cell number-microtissue size correlation, (2) intermicrotissue superstructures, (3) retention of key cardiomyocyte-specific cell qualities, (4) a sophisticated extracellular matrix, and (5) a high degree of self-organization exemplified by the tendency of muscle structures to assemble at the periphery of these myocardial spheroids. Furthermore (6), myocardial spheroids support endogenous VEGF expression in a size-dependent manner that will likely promote vascularization of heart microtissues produced from defined cell mixtures as well as support connection to the host vascular system after implantation. As cardiomyocytes are known to be refractory to current transfection technologies we have designed lentivirus-based transduction strategies to lead the way for genetic engineering of myocardial microtissues in a clinical setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Accurate neuromuscular control of the patellofemoral joint is important in knee joint mechanics. Strategies to coordinate the vasti muscles, such as motor unit synchronization, may simplify control of patellar tracking. This study investigated motor unit synchronization between vastus medialis (VM) and lateralis (VL). Methods: Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VM and single- and multi-unit recordings were made from VL. Synchronization was quantified from peaks in the cross-correlogram generated from single MUAP pairs in VL and VM. The proportion of motor units in VM with synchronized firing in VL was also quantified from peaks in averages of multiunit VL EMG triggered from the VM MUAP. Results: A high degree of synchronization of motor unit firing between VM and VL was identified. Results were similar for cross-correlation (similar to 45% of cases) and triggered averages (similar to 41% of cases). Conclusions: The data suggest that synchronization between VM and VL is higher than expected. Agreement between traditional cross-correlation and triggered averaging methods suggest that this new technique may provide a more clinically viable method to quantify synchronization. Significance: High synchronization between VM and VL may provide a solution to simplify control of the mechanically unstable patellofemoral joint. (c) 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the production of dimethylsulfide (DMS) in the upper ocean and atmospheric sulfate aerosols has been confirmed through local shipboard measurements, and global modeling studies alike. In order to examine whether such a connection may be recoverable in the satellite record, we have analyzed the correlation between mean surface chlorophyll (CHL) and aerosol optical depth (AOD) in the Southern Ocean, where the marine atmosphere is relatively remote from anthropogenic and continental influences. We carried out the analysis in 5-degree zonal bands between 50 degrees S and 70 degrees S, for the period ( 1997 - 2004), and in smaller meridional sectors in the Eastern Antarctic, Ross and Weddell seas. Seasonality is moderate to strong in both CHL and AOD signatures throughout the study regions. Coherence in the CHL and AOD time series is strong in the band between 50 degrees S and 60 degrees S, however this synchrony is absent in the sea-ice zone (SIZ) south of 60 degrees S. Marked interannual variability in CHL occurs south of 60 degrees S, presumably related to variability in sea-ice production during the previous winter. We find a clear latitudinal difference in the cross correlation between CHL and AOD, with the AOD peak preceding the CHL bloom by up to 6 weeks in the SIZ. This suggests that substantial trace gas emissions ( aerosol precursors) are being produced over the SIZ in spring ( October - December) as sea ice melts. This hypothesis is supported by field data that record extremely high levels of sulfur species in sea ice, surface seawater, and the overlying atmosphere during ice melt.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For quantum systems with linear dynamics in phase space much of classical feedback control theory applies. However, there are some questions that are sensible only for the quantum case: Given a fixed interaction between the system and the environment what is the optimal measurement on the environment for a particular control problem? We show that for a broad class of optimal (state- based) control problems ( the stationary linear-quadratic-Gaussian class), this question is a semidefinite program. Moreover, the answer also applies to Markovian (current-based) feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state a alpha/0 > + beta/1 > can be prepared deterministically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the cross-entropy method has been successfully applied to a wide range of discrete optimization tasks. In this paper we consider the cross-entropy method in the context of continuous optimization. We demonstrate the effectiveness of the cross-entropy method for solving difficult continuous multi-extremal optimization problems, including those with non-linear constraints.