23 resultados para Lexicographically Ordered Chains
em University of Queensland eSpace - Australia
Resumo:
In this paper we study the Debreu Gap Lemma and its generalizations to totally ordered sets more general than (R, less than or equal to). We explain why it is important in economics to study utility functions which may not be real-valued and we build the foundations of a theory of continuity of such generalized utility functions. (C) 2004 Published by Elsevier B.V.
Resumo:
Background: A new immunoassay for free light chain measurements has been reported to be useful for the diagnosis and monitoring of monoclonal light chain diseases and nonsecretory myeloma. We describe experience with and some potential pitfalls of the assay. Methods: The assay was assessed for precision, sample type and stability, recovery, and harmonization of results between two analyzers on which the reagents are used. Free-light-chain concentrations were measured in healthy individuals (to determine biological variation), patients with monoclonal gammopathy of undetermined significance, myeloma patients after autologous stem cell transplants, and patients with renal disease. Results: Analytical imprecision (CV) was 6-11% for kappa and A free-light-chain measurement and 16% for the calculated kappa/lambda ratio. Biological variation was generally insignificant compared with analytical variation. Despite the same reagent source, values were not completely harmonized between assay systems and may produce discordant free-light-chain ratios. In some patients with clinically stable myeloma, or post transplantation, or with monoclonal gammopathy of undetermined significance, free-light-chain concentration and ratio were within the population reference interval despite the presence of monoclonal intact immunoglobulin in serum. In other patients with monoclonal gammopathy of undetermined significance, values were abnormal although there was no clinical evidence of progression to multiple myeloma. Conclusions: The use of free-light-chain measurements alone cannot differentiate some groups of patients with monoclonal gammopathy from healthy individuals. As with the introduction of any new test, it is essential that more scientific data about use of this assay in different subject groups are available so that results can be interpreted with clinical certainty. (C) 2003 American Association for Clinical Chemistry.
Resumo:
The purpose of this study was to systematically investigate the effect of lipid chain length and number of lipid chains present on lipopeptides on their ability to be incorporated within liposomes. The peptide KAVYNFATM was synthesized and conjugated to lipoamino acids having acyl chain lengths of C-8, C-12 and C-16. The C-12 construct was also prepared in the monomeric, dimeric and trimeric form. Liposomes were prepared by two techniques: hydration of dried lipid films (Bangham method) and hydration of freeze-dried monophase systems. Encapsulation of lipopeptide within liposomes prepared by hydration of dried lipid films was incomplete in all cases ranging from an entrapment efficiency of 70% for monomeric lipoamino acids at a 5% (w/w) loading to less than 20% for di- and trimeric forms at loadings of 20% (w/w). The incomplete entrapment of lipopeptides within liposomes appeared to be a result of the different solubilities of the lipopeptide and the phospholipids in the solvent used for the preparation of the lipid film. In contrast, encapsulation of lipopeptide within liposomes prepared by hydration of freeze-dried monophase systems was high, even up to a loading of 20% (w/w) and was much less affected by the acyl chain length and number than when liposomes were prepared by hydration of dried lipid films. Freeze drying of monophase systems is better at maintaining a molecular dispersion of the lipopeptide within the solid phospholipid matrix compared to preparation of lipid film by evaporation, particularly if the solubility of the lipopeptide in solvents is markedly different from that of the polar lipids used for liposome preparation. Consequently, upon hydration, the lipopeptide is more efficiently intercalated within the phospholipid bilayers. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A novel member of the human relaxin subclass of the insulin superfamily was recently discovered during a genomics database search and named relaxin-3. Like human relaxin-1 and relaxin-2, relaxin-3 is predicted to consist of a two-chain structure and three disulfide bonds in a disposition identical to that of insulin. To undertake detailed biophysical and biological characterization of the peptide, its chemical synthesis was undertaken. In contrast to human relaxin-1 and relaxin-2, however, relaxin-3 could not be successfully prepared by simple combination of the individual chains, thus necessitating recourse to the use of a regioselective disulfide bond formation strategy. Solid phase synthesis of the separate, selectively S-protected A and B chains followed by their purification and the subsequent stepwise formation of each of the three disulfides led to the successful acquisition of human relaxin-3. Comprehensive chemical characterization confirmed both the correct chain orientation and the integrity of the synthetic product. Relaxin-3 was found to bind to and activate native relaxin receptors in vitro and stimulate water drinking through central relaxin receptors in vivo. Recent studies have demonstrated that relaxin-3 will bind to and activate human LGR7, but not LGR8, in vitro. Secondary structural analysis showed it to adopt a less ordered confirmation than either relaxin-1 or relaxin-2, reflecting the presence in the former of a greater percentage of nonhelical forming amino acids. NMR spectroscopy and simulated annealing calculations were used to determine the three-dimensional structure of relaxin-3 and to identify key structural differences between the human relaxins.
Resumo:
atomic force microscopy (AFM); atom transfer radical polymerization (ATRP); block copolymers; self-assembly; silica nanoparticles.
Resumo:
Let (Phi(t))(t is an element of R+) be a Harris ergodic continuous-time Markov process on a general state space, with invariant probability measure pi. We investigate the rates of convergence of the transition function P-t(x, (.)) to pi; specifically, we find conditions under which r(t) vertical bar vertical bar P-t (x, (.)) - pi vertical bar vertical bar -> 0 as t -> infinity, for suitable subgeometric rate functions r(t), where vertical bar vertical bar - vertical bar vertical bar denotes the usual total variation norm for a signed measure. We derive sufficient conditions for the convergence to hold, in terms of the existence of suitable points on which the first hitting time moments are bounded. In particular, for stochastically ordered Markov processes, explicit bounds on subgeometric rates of convergence are obtained. These results are illustrated in several examples.
Resumo:
We derive necessary and sufficient conditions for the existence of bounded or summable solutions to systems of linear equations associated with Markov chains. This substantially extends a famous result of G. E. H. Reuter, which provides a convenient means of checking various uniqueness criteria for birth-death processes. Our result allows chains with much more general transition structures to be accommodated. One application is to give a new proof of an important result of M. F. Chen concerning upwardly skip-free processes. We then use our generalization of Reuter's lemma to prove new results for downwardly skip-free chains, such as the Markov branching process and several of its many generalizations. This permits us to establish uniqueness criteria for several models, including the general birth, death, and catastrophe process, extended branching processes, and asymptotic birth-death processes, the latter being neither upwardly skip-free nor downwardly skip-free.
Resumo:
We examine the teleportation of an unknown spin-1/2 quantum state along a quantum spin chain with an even number of sites. Our protocol, using a sequence of Bell measurements, may be viewed as an iterated version of the 2-qubit protocol of C. H. Bennett et al. [Phys. Rev. Lett. 70, 1895 (1993)]. A decomposition of the Hilbert space of the spin chain into 4 vector spaces, called Bell subspaces, is given. It is established that any state from a Bell subspace may be used as a channel to perform unit fidelity teleportation. The space of all spin-0 many-body states, which includes the ground states of many known antiferromagnetic systems, belongs to a common Bell subspace. A channel-dependent teleportation parameter O is introduced, and a bound on the teleportation fidelity is given in terms of O.
Resumo:
Ordered mesoporous carbon CMK-5 was comprehensively tested for the first time as electrode materials in lithium ion battery. The surface morphology, pore structure and crystal structure were investigated by Scanning Electronic Microscopy (SEM), N-2 adsorption technique and X-ray diffraction (XRD) respectively. Electrochemical properties of CMK-5 were studied by galvanostatic cycling and cyclic voltammetry, and compared with conventional anode material graphite. Results showed that the reversible capacity of CMK-5 was 525 mAh/g at the third charge-discharge cycle and that CMK-5 was more compatible for quick charge-discharge cycling because of its special mesoporous structure. Of special interest was that the CMK-5 gave no peak on its positive sweep of the cyclic voltammetry, which was different from all the other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also applied to investigate the charge-discharge characteristics of CMK-5.
Resumo:
Ordered nanoporous carbon (ONC) was comprehensively tested for the first time as electrode material in lithium-ion battery. Structure characterization shows the order nanoporous structure and tiny crystallite structure of as-synthesized ONC. The electrochemical properties of this carbon were studied by galvanostatic cycling and cyclic voltammetry. Of special interest is that ONC gave no peak on its positive sweep of the cyclic voltammetry, which was different from other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also used to investigate the electrochemical characteristics of ONC. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Ordered mesoporous materials show great importance in energy, environmental, and chemical engineering. The diffusion of guest species in mesoporous networks plays an important role in these applications, especially for energy storage, such as supercapacitors based on ordered mesoporous carbons ( OMCs). The ion diffusion behavior in two different 2-D hexagonal OMCs was investigated by using cyclic voltametry and electrochemical impedance spectroscopy. In addition, transmission electron microscopy, small-angle X-ray diffraction, and nitrogen cryosorption methods were used to study the pore structure variations of these two OMCs. It was found that, for the OMC with defective pore channels ( termed as pore packing defects), the gravimetric capacitance was greatly decayed when the voltage scan rate was increased. The experimental results suggest that, for the ion diffusion in 2-D hexagonal OMCs with similar mesopore size distribution, the pore packing defect is a dominant dynamic factor.
Resumo:
Highly ordered rodlike periodic mesoporous organosilicas (PMO) were successfully synthesized using 1.2-bis(trimethoxysilyl)ethane as an precursor and triblock copolymer P123 as a template at low acid concentration and in the presence of inorganic salts (KCl). The role of acid and salt as well as the effects of synthesis temperature and reactant mole ratio in the control of morphology and the formation of ordered mesostructure was systematically examined. It was found that the addition of inorganic salt can dramatically expand the range of the synthesis parameters to produce highly ordered PMO structure and improve the quality of PMO materials. The morphology of PMOs was significantly dependent on the induction time for precipitation. The uniform PMO rods can only be synthesized in a narrow range of acid and salt concentrations. The results also show that the optimized salt concentration (I M) and low acidity (0.167 M) were beneficial to the formation of not only highly ordered mesostructure but also rodlike morphology. Increasing acidity resulted in fast hydrolysis reaction and short rod or plate-like particles. Highly ordered rod can also be prepared at low temperature (35 degrees C) with high salt amount (1.5 M) or high temperature (45 degrees C) with low salt amount (0.5 M). Optimum reactant molar composition at 40 degrees C is 0.035P123:8KCl:1.34HCI:444H(2)O:1.0bis(trimethoxysilyl)ethane. Lower or higher SiO2/PI23 ratio led to the formation of uniform meso-macropores or pore-blocking effect. (c) 2005 Elsevier Inc. All rights reserved.