42 resultados para Letters, Dutch, Neo-Latin.
em University of Queensland eSpace - Australia
Resumo:
A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1-factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n describes a perfect 1-factorization of Kn,n, and vice versa. Perfect 1-factorizations of Kn,n can be constructed from a perfect 1-factorization of Kn+1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker's famous turn-square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin's diagonally cyclic self-orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self-orthogonal Latin squares in the same main class as a given Latin square.
Resumo:
This paper discusses existence results for latin trades and provides a Glueing Construction which is subsequently used to construct all latin trades of finite order greater than three.
Letters of the Great Kings of the Ancient Near East: The Royal Correspondence of the Late Bronze Age
Resumo:
In this paper I give details of new constructions for critical sets in latin squares. These latin squares, of order n, are such that they can be partitioned into four subsquares each of which is based on the addition table of the integers module n/2, an isotopism of this or a conjugate.
Resumo:
I noted with interest the article by Drs Perrin and Guex, entitled &dquo;Edema and leg volume: Methods of assessment,&dquo; published in Angiology 51:9-12, 2000. This was a timely and comprehensive review of the various methods in clinical use for the assessment of peripheral edema, notably in the leg. I would like to take this opportunity to alert readers to a further technique useful for this purpose, namely, bioelectrical impedance analysis. An early reportl described its use for the measurement of edema in the leg, but other than its successful use for the assessment of edema in the arm following masteCtoMy,2,1 the potential of the method remains to be fully realized. This is unfortunate since the method directly and quantifiably measures edema.
Resumo:
To date very Few families of critical sets for latin squares are known. The only previously known method for constructing critical sets involves taking a critical set which is known to satisfy certain strong initial conditions and using a doubling construction. This construction can be applied to the known critical sets in back circulant latin squares of even order. However, the doubling construction cannot be applied to critical sets in back circulant latin squares of odd order. In this paper a family of critical sets is identified for latin squares which are the product of the latin square of order 2 with a back circulant latin square of odd order. The proof that each element of the critical set is an essential part of the reconstruction process relies on the proof of the existence of a large number of latin interchanges.
Resumo:
In an article in 1992, Drapal addressed the question of how far apart the multiplication tables of two groups can be? In this article we continue this investigation; in particular, we study the interaction between partial equalities in the multiplication tables of the two groups and their subgroup structure. (C) 1997 John Wiley & Sons, Inc.
Resumo:
In this article five women explore (female) embodiment in academic work in current workplaces. In a week-long collective biography workshop they produced written memories of themselves in their various workplaces and memories of themselves as children and as students. These memories then became the texts out of which the analysis was generated. The authors examine the constitutive and seductive effects of neoliberal discourses and practices, and in particular, the assembling of academic bodies as particular kinds of working bodies. They use the concept of chiasma, or crossing over, to trouble some aspects of binary thinking about bodies and about the relations between bodies and discourses. They examine the way that we simultaneously resist and appropriate, and are seduced by and appropriated within, neoliberal discourses and practices.