11 resultados para Leptodactylus araucaria

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten microsatellite loci are described in Araucaria cunninghamii, the first reported in the Araucariaceae. Eight were tested in sections Eutacta and Bunya, which diverged more than 200 MYA, and to the sister genus Agathis. Specific amplification products within the expected size range were obtained for six to eight loci in section Eutacta (depending on species), five loci in section Bunya and three. loci in Agathis. Two of the loci (CRCAc1 and CRCAc2, both GA repeats) produced specific amplification products in all taxa, with orthology confirmed by sequence analysis. The repeats were perfect in all taxa. The flanking sequences were extremely conserved, with sequence divergence of 0% to 2.0% within Araucaria species and 2.9% to 7.5% between Araucaria and Agathis. These microsatellites represent some of the most conserved microsatellite loci reported in plants. This may be due to a low evolutionary rate in Araucariaceae genome or the loci may be closely associated with highly conserved, unreported genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The area of private land suitable and available for growing hoop pine (Araucaria cunninghamii) on the Atherton Tablelands in North Queensland was modelled using a geographic information system (GIS). In Atherton, Eacham and Herberton shires, approximately 64,700 ha of privately owned land were identified as having a mean annual rainfall and soil type similar to Forestry Plantations Queensland (FPQ) hoop pine growth plots with an approximate growth rate of 20 m3 per annum. Land with slope of over 25° and land covered with native vegetation were excluded in the estimation. If land which is currently used for high-value agriculture is also excluded, the net area of land potentially suitable and available for expansion of hoop pine plantations is approximately 22,900 ha. Expert silvicultural advice emphasized the role of site preparation and weed control in affecting the long-term growth rate of hoop pine. Hence, sites with less than optimal fertility and rainfall may be considered as being potentially suitable for growing hoop pine at a lower growth rate. The datasets had been prepared at various scales and differing precision for their description of land attributes. Therefore, the results of this investigation have limited applicability for planning at the individual farm level but are useful at the regional level to target areas for plantation expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed pollen record from the Ocean Drilling Program Site 820 core, located on the upper part of the continental slope off the coast of northeast Queensland, was constructed to compare with the existing pollen record from Lynch's Crater on the adjacent Atherton Tableland and allow the production of a regional picture of vegetation and environmental change through the last glacial cycle. Some broad similarities in patterns of vegetation change are revealed, despite the differences between sites and their pollen catchments, which can be related largely to global climate and sea-level changes. The original estimated time scale of the Lynch's Crater record is largely confirmed from comparison with the more thoroughly dated ODP record. Conversely, the Lynch's Crater pollen record has assisted in dating problematic parts of the ODP record. In contrast to Lynch's Crater, which reveals a sharp and sustained reduction in drier araucarian forest around 38,000 yrs BP, considered to have been the result of burning by Aboriginal people, the ODP record indicates, most likely, a stepwise reduction, dating from 140,000 yrs BP or beyond. The earliest reduction shows lack of a clear connection between Araucaria decline and increased burning and suggests that people may not have been involved at this stage. However, a further decline in araucarian forest, possibly around 45,000 yrs BP, which has a more substantial environmental impact and is not related to a time of major climate change, is likely, at least partially, the result of human burning. The suggestion, from the ODP core oxygen isotope record, of a regional sea-surface temperature increase of around 4 degrees C between about 400,000 and 250,000 yrs BP, may have had some influence on the overall decline in Araucaria and its replacement by sclerophyll vegetation. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon isotope composition (delta C-13), oxygen isotope composition (delta O-18), and nitrogen concentration (N-mass) of branchlet tissue at two canopy positions were assessed for glasshouse seedlings and 9-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 22 open-pollinated families grown in 5 blocks of a progeny test at a water-limited and nitrogen-deficient site in southeastern Queensland, Australia. Significant variations in canopy delta C-13, delta O-18, and N-mass existed among the 9-year-old hoop pine families, with a heritability estimate of 0.72 for branchlet delta C-13 from the upper inner canopy position. There was significant variation in canopy delta C-13 of glasshouse seedlings between canopy positions and among the families, with a heritability estimate of 0.66. The canopy delta C-13 was positively related to canopy N-mass only for the upper outer crown in the field (R = 0.62, p < 0.001). Phenotypic correlations existed between tree height and canopy delta C-13 (R = 0.37-0.41, p < 0.001). Strong correlations were found between family canopy delta C-13 at this site and those at a wetter site and between field canopy delta C-13 and glasshouse seedling delta C-13. The mechanisms of the variation in canopy delta C-13 are discussed in relation to canopy photosynthetic capacity as reflected in the N-mass and stomatal conductance as indexed by canopy delta O-18.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A field study was carried out to investigate the impacts of windrowed harvesting residues on denitrification, immobilisation and leaching of N-15-labelled nitrate applied at 20 kg N ha(-1) to microplots in second-rotation hoop pine (Araucaria cunninghamii) plantations of 1-3 years old in southeast Queensland, Australia. The PVC microplots were 235 mm in diameter and 150 mm. long, and driven into the 100 mm soil. There were three replications of such microplots for each of the six treatments which were areas just under and between 1-, 2- and 3-year-old windrows of harvesting residues. Based on gaseous N losses estimated by the difference between the recoveries of bromide (Br) applied at 100 kg Br ha(-1) and N-15-labelled nitrate, denitrification was highest (23% based on N-15 loss) in the areas just under the 1-year-old windrows 25 days after a simulated 75 mm rainfall and following several natural rainfall events. There was no significant difference in N-15 losses (14-17%) among the other treatments. The N-15 immobilisation rate was highest for microplots in the areas between the 1-year-old windrows and generally higher for microplots in the areas just under the windrows (30-39%) than that (26-30%) between the windrows. Direct measurement of N-15 gas emissions (N-15(2) + (N2O)-N-15) confirmed that the highest denitrification rate occurred in the microplots under the 1-year-old windrows although the gaseous N-15 loss calculated by gas emission was only about one-quarter that estimated by the N-15 mass balance method. A significant, positive linear relationship (P < 0.05) existed between the gaseous N-15 losses measured by the two methods used. The research indicates that considerable mineral N could be lost via denitrification during the critical inter-rotation period and early phase of the second rotation. However, the impacts of windrowed harvesting residues on N losses via denitrification might only last for a period of about 2 years. Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A field study was conducted to investigate the fate of N-15-labelled nitrate applied at 20 kg N ha(-1) in a wet summer to microplots installed in areas under different residue management regimes in second-rotation hoop pine (Araucaria cunninghamii) plantations aged 1-3 years in south-east Queensland, Australia. PVC microplots of 235 mm diameter and 300 mm long were driven into 250 mm soil. There were three replications of each of eight treatments. These were areas just under and between 1-year-old windrows (ca. 2-3 m in width) of harvesting residues spaced 15 m apart, and with and without incorporated foliage residues (20 t DM ha(-1)); the areas just under and between 2- or 3-year-old windrows spaced 10 m apart. Only 7-29% of the added N-15 was recovered from the top 750 mm of the soil profile with the leaching loss estimated to be 70-86% over the 34-day period. The N-15 loss via denitrification was 3.7-6.3% by directly measuring the N-15 gases emitted. The microplots with the incorporated residues at the 1-year-old site had the highest N-15 loss (6.3%) as compared with the other treatments. The N-15 mass balance method together with the use of bromide (Br) tracer applied at 100 kg Br ha(-1) failed to obtain a reliable estimate of the denitrification loss. The microplots at the 1-year-old site had higher N-15 immobilisation rate (7.5-24.7%) compared with those at 2- and 3-year-old sites (2.1-3.6%). Incorporating the residues resulted in an increase in N-15 immobilisation rate (24.5-24.7%) compared with the control without the incorporated residues (8.4-14.3%). These findings suggest that climatic conditions played important roles in controlling the N-15 transformations in the wet summer season and that the residue management regimes could also significantly influence the N-15 transformations. Most of the N-15 loss occurred through leaching, but a considerable amount of the N-15 was lost through denitrification. Bromide proved to be an unsuitable tracer for monitoring the N-15 leaching and movement under the wet summer conditions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Wollemi pine, Wollemia nobilis (Araucariaceae), was discovered in 1994 as the only extant member of the genus, previously known only from the fossil record. With fewer than 100 trees known from an inaccessible canyon in southeastern Australia, it is one of the most endangered tree species in the world. We conducted a comparative population genetic survey at allozyme, amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) loci in W. nobilis, Araucaria cunninghatnii and Agathis robusta - representatives of the two sister genera. No polymorphism was detected at 13 allozyme loci, more than 800 AFLP loci or the 20 SSR loci screened in W. nobilis. In Ag. robusta only one of 12 allozyme loci, five of 800 AFLP loci and none of the 15 SSR loci were variable. For A. cunninghamii, 10 of > 800 AFLP loci and five of 20 SSR loci were variable. Thus low genetic diversity characterizes all three species. While not ruling out the existence of genetic variation, we conclude that genetic diversity is exceptionally low in the Wollemi pine. To our knowledge this is the most extreme case known in plants. We conclude that the combination of small population effects, clonality and below-average genetic variation in the family are probable contributing factors to the low diversity. The exceptionally low genetic diversity of the Wollemi pine, combined with its known susceptibility to exotic fungal pathogens, reinforces current management policies of strict control of access to the pines and secrecy of the pine locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information on decomposition of harvest residues may assist in the maintenance of soil fertility in second rotation (2R) hoop pine plantations (Araucaria cunninghamii Aiton ex A. Cunn.) of subtropical Australia. The experiment was undertaken to determine the dynamics of residue decomposition and fate of residue-derived N. We used N-15-labeled hoop pine foliage, branch, and stem material in microplots, over a 30-mo period following harvesting. We examined the decomposition of each component both singly and combined, and used C-13 cross-polarization and magic-angle spinning nuclear magnetic resonance (C-13 CPMAS NMR) to chart C transformations in decomposing foliage. Residue-derived N-15 was immobilized in the 0- to 5-cm soil layer, with approximately 40% N-15 recovery in the soil from the combined residues by the end of the 30-mo period. Total recovery of N-15 in residues and soil varied between 60 and 80% for the combined-residue microplots, with 20 to 40% of the residue N-15 apparently lost. When residues were combined within microplots the rate of foliage decomposition decreased by 30% while the rate of branch and stem decomposition increased by 50 and 40% compared with rates for these components when decomposed separately. Residue decomposition studies should include a combined-residue treatment. Based on C-15 CPMAS NMR spectra for decomposing foliage, we obtained good correlations for methoxyl C, aryl C, carbohydrate C and phenolic C with residue mass, N-15 enrichment, and total N. The ratio of carbohydrate C to methoxyl C may be useful as an indicator of harvest residue decomposition in hoop pine plantations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoculture plantations of Pinus, Eucalyptus and Acacia have been established oil rainforest lands throughout the world. However, this type of reforestation generally supplies low quality timber and contributes to landscape simplification. Alternatives to exotic monoculture plantations are now beginning to gain momentum with farmers and landholders attempting to establish a variety of rainforest trees in small plantations. When compared to the well studied commercial species, knowledge concerning the growth and management of many of these rainforest species is in its infancy. To help expand this limited knowledge base an experimental plantation of 16 rainforest tree species in a randomised design was established near Mt. Mee, in south-eastern Queensland, Australia. Changes in growth, form (based on stem straightness, branch size and branchiness), crown diameters and leaf area of each species were examined over 5 years. Patterns of height growth were also measured monthly for 31 months. Species in this trial could be separated into three groups based on their overall growth after 5 years and their growth patterns. Early successional status, low timber density, high maximum photosynthetic rates and large total leaf areas were generally correlated to rapid height growth. Several species (including Araucaria cunninghamii, Elaeocarpus grandis, Flindersia brayleyana, Grevillea robusta and Khaya nyasica) had above average form and growth, while all species in the trial had considerable potential to have increased productivity through tree selection. As canopy closure occurred at the site between years four and five, growth increments declined. To reduce stand competition a number of different thinning techniques could be employed. However, simple geometric or productivity based thinnings appear to be inappropriate management techniques for this mixed species stand as they would either remove many of the best performing trees or nearly half the species in the trial. Alternatively, a form based thinning would maintain the site's diversity, increase the average form of the plantation and provide some productivity benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results from the humid tropics of Australia demonstrate that diverse plantations can achieve greater productivity than monocultures. We found that increases in both the observed species number and the effective species richness were significantly related to increased levels of productivity as measured by stand basal area or mean individual tree basal area. Four of five plantation species were more productive in mixtures with other species than in monocultures, offering on average, a 55% increase in mean tree basal area. A general linear model suggests that species richness had a significant effect on mean individual tree basal area when environmental variables were included in the model. As monoculture plantations are currently the preferred reforestation method throughout the tropics these results suggest that significant productivity and ecological gains could be made if multi-species plantations are more broadly pursued. (c) 2006 Elsevier B.V. All rights reserved.