2 resultados para Lepomis marginatus

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As larvae of marine invertebrates age, their response to settlement cues can change. This change can have significant consequences to both the ecology of these organisms, and to their response to antifouling coatings. This study examines how larval age affects the settlement response of larvae to two naturally derived settlement inhibitors, non-polar extracts from the algae Delisea pulchra and Dilophus marginatus, the former of which contains compounds that are in commercial development as antifoulants. Two species of marine invertebrates with non-feeding larvae were investigated: the bryozoans Watersipora subtorquata and Bugula neritina. Larval age strongly affected larval settlement, with older larvae settling at much higher rates than younger larvae. Despite having strong, inhibitory effects on young larvae, the non-polar extracts did not inhibit the settlement of older larvae to the same degree for both species studied. The results show that the effects of ecologically realistic settlement inhibitors are highly dependent on larval age. Given that the age of settling larvae is likely to be variable in the field, such age specific variation in settlement response of larvae may have important consequences for host-epibiont interactions in natural communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. We investigated the morphological responses of larval Rana lessonae to the presence of two predators with substantially different prey-detection and capture techniques; larval dragonflies (Aeshna cyanea) and the Pumpkinseed Sunfish (Lepomis gibossus). 2. We also examined the functional implications of any predator-induced morphological variation on their swimming ability by assessing performance during the initial stages of a startle response. 3. We found the morphological responses of larval R. lessonae were dependent on the specific predator present. Tadpoles raised in the presence of dragonfly larvae preying upon conspecific tadpoles developed total tail heights 5.4% deeper and tail muscles 4.7% shallower than tadpoles raised in a non-predator environment, while tadpoles raised with sunfish possessed tails 2% shallower and tail muscles 2.5% higher than non-predator-exposed tadpoles. 4. Predator-induced morphological variation also significantly influenced swimming performance. Tadpoles raised with sunfish possessed swimming speeds 9.5 and 14.6% higher than non- and dragonfly predator groups, respectively. 5. Thus, the expression of these alternative predator-morphs leads to a functional trade-off in performance between the different environments.