45 resultados para Leaf-scald Pathogen
em University of Queensland eSpace - Australia
Resumo:
Albicidins, a family of phytotoxins and antibiotics produced by Xanthomonas albilineans, are important in sugar cane leaf scald disease development. The albicidin detoxifying bacterium Pantoea dispersa (syn. Erwinia herbicola) SB1403 provides very effective biocontrol against leaf scald disease in highly susceptible sugar cane cultivars. The P. dispersa gene (albD) for enzymatic detoxification of albicidin has recently been cloned and sequenced. To test the role of albicidin detoxification in biocontrol of leaf scald disease, albD was inactivated in P. dispersa by site-directed mutagenesis. The mutants, which were unable to detoxify albicidin, were less resistant to the toxin and less effective in biocontrol of leaf scald disease than their parent strain. This indicates that albicidin detoxification contributes to the biocontrol capacity of P. dispersa against X. albilineans. Rapid growth and ability to acidify media are other characteristics likely to contribute to the competitiveness of P. dispersa against X. albilineans at wound sites used to invade sugar cane.
Resumo:
Single-copy restriction fragment length polymorphism (RFLP) markers were used to determine the genetic structure of the global population of Mycosphaerella musicola, the cause of Sigatoka (yellow Sigatoka) disease of banana. The isolates of M. musicola examined were grouped into four geographic populations representing Africa, Latin America and the Caribbean, Australia and Indonesia. Moderate levels of genetic diversity were observed for most of the populations (H = 0.22-0.44). The greatest genetic diversity was found in the Indonesian population (H = 0.44). Genotypic diversity was close to 50% in all populations. Population differentiation tests showed that the geographic populations of Africa, Latin America and the Caribbean, Australia and Indonesia were genetically different populations. Using F-ST tests, very high levels of genetic differentiation were detected between all the population pairs (F-ST > 0.40), with the exception of the Africa and Latin America-Caribbean population pair. These two populations differed by only 3% (F-ST = 0.03), and were significantly different (P < 0.05) from all other population pairs. The high level of genetic diversity detected in Indonesia in comparison to the other populations provides some support for the theory that M. musicola originated in South-east Asia and that M. musicola populations in other regions were founded by isolates from the South-east Asian region. The results also suggest the migration of M. musicola between Africa and the Latin America-Caribbean region.
Resumo:
Transposon mutagenesis and complementation studies previously identified a gene (xabB) for a large (526 kDa) polyketide-peptide synthase required for biosynthesis of albicidin antibiotics and phytotoxins in the sugarcane leaf scald pathogen Xanthomonas albilineans. A cistron immediately downstream from xabB encodes a polypeptide of 343 aa containing three conserved motifs characteristic of a family of S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases. Insertional mutagenesis and complementation indicate that the product of this cistron (designated xabC) is essential for albicidin production, and that there is no other required downstream cistron. The xab promoter region is bidirectional, and insertional mutagenesis of the first open reading frame (ORF) in the divergent gene also blocks albicidin biosynthesis. This divergent ORF (designated thp) encodes a protein of 239 aa displaying high similarity to several IS21-like transposition helper proteins. The thp cistron is not located in a recognizable transposon, and is probably a remnant from a past transposition event that may have contributed to the development of the albicidin biosynthetic gene cluster. Failure of 'in trans' complementation of rhp indicates that a downstream cistron transcribed with thp is required for albicidin biosynthesis. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A genomic region containing the fatty acid biosynthetic (fab) genes was isolated from the sugarcane leaf-scald pathogen Xanthomonasalbilineans. The order and predicted products of fabG (beta -ketoacyl reductase), acpP (acyl carrier protein), fabF(ketoacyl synthase II) and downstream genes in X. albilineans are very similar to those in Escherichia coli, with one exception. Sequence analysis, confirmed by insertional knockout and specific substrate feeding experiments, shows that the position occupied by pabC (encoding aminodeoxychorismate lyase) in other bacteria is occupied instead by pabB (encoding aminodeoxychorismate synthase component I) in X. albilineans. Downstream of pabB, X. albilineans resumes the arrangement common to characterized Gram-negative bacteria, with three transcriptionally coupled genes, encoding an ORF340 protein of undefined function, thymidylate kinase and delta' subunit of DNA polymerase III holoenzyme (HolB). Different species may obtain a common advantage from coordinated regulation of the same biosynthetic pathways using different genes in this region. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Albicidins, a family of potent antibiotics and phytotoxins produced by the sugarcane leaf scald pathogen Xanthomonas albilineans, inhibit DNA replication in bacteria and plastids. A gene located by Tn5-tagging was confirmed by complementation to participate in albicidin biosynthesis. The gene (xabB) encodes a large protein (predicted Mr 525695), with a modular architecture indicative of a multifunctional polyketide synthase (PKS) linked to a non-ribosomal peptide synthetase (NRPS). At 4801 amino acids in length, XabB is the largest reported PKS–NRPS. Twelve catalytic domains in this multifunctional enzyme are arranged in the order N terminus–acyl-CoA ligase (AL)–acyl carrier protein (ACP)–ß-ketoacyl synthase (KS)–ß-ketoacyl reductase (KR)–ACP–ACP–KS–peptidyl carrier protein (PCP)–condensation (C)–adenylation–PCP–C. The modular architecture of XabB indicates likely steps in albicidin biosynthesis and approaches to enhance antibiotic yield. The novel pattern of domains, in comparison with known PKS–NRPS enzymes for antibiotic production, also contributes to the knowledge base for rational design of enzymes producing novel antibiotics.
Resumo:
We generated transgenic sugarcane plants that express an albicidin detoxifying gene (albD), which was cloned from a bacterium that provides biocontrol against leaf scald disease. Plants with albicidin detoxification capacity equivalent to 1-10 ng of AlbD enzyme per mg of leaf protein did not develop chlorotic disease symptoms in inoculated leaves, whereas all untransformed control plants developed severe symptoms. Transgenic lines with high AlbD activity in young stems were also protected against systemic multiplication of the pathogen, which is the precursor to economic disease. We have shown that genetic modification to express a toxin-resistance gene can confer resistance to both disease symptoms and multiplication of a toxigenic pathogen in its host.
Resumo:
An international collection of the sugarcane ratoon stunting disease pathogen, Leifsonia xyli subsp. xyli, was analysed to assess genetic diversity. DNA fingerprinting using BOX primers was performed on 105 isolates, comprising 65 Australian isolates and an additional 40 isolates from Indonesia (n = 8), Japan (n = 1), USA (n = 3), Brazil (n = 2), Mali (n = 2), Zimbabwe (n = 13), South Africa (n = 9) and Reunion (n = 2). Sixty-two of these isolates were also screened using ERIC primers. No variation was found among any of the isolates. The intergenic spacer (IGS) region of the ribosomal RNA genes from 54 isolates was screened for sequence variation using single-stranded conformational polymorphism (SSCP), but none was observed. Direct sequencing of the IGS from a subset of nine isolates, representing all of the countries sampled in this study, confirmed the results of the SSCP analysis. Likewise, no sequence variation was found in the 16S ribosomal RNA genes of the same subset. Four Colombian isolates from sugarcane, morphologically similar to L. xyli subsp. xyli, were putatively shown to be an undescribed Agrococcus species of unknown pathogenicity. The lack of genetic variation among L. xyli subsp. xyli isolates, independent of time of sampling, cultivar of isolation, or country of origin, suggests the worldwide spread of a single pathogenic clone, and further suggests that sugarcane cultivars resistant to ratoon stunting disease in one area should retain this property in other regions.
Resumo:
Albicidins are a family of phytotoxins and antibiotics which play an important role in the pathogenesis of sugarcane leaf scald disease. The albA gene from Klebsiella oxytoca encodes a protein which inactivates albicidin by heat-reversible binding. Albicidin ligand binding to a recombinant AlbA protein, purified by means of a glutathione S-transferase gene fusion system, is an almost instant and saturable reaction. Kinetic and stoichiometric analysis of the binding reaction indicated the presence of a single high affinity binding site with a dissociation constant of 6.4 x 10(-8) M. The AlbA-albicidin complex is stable from 4 to 40 degrees C, from ph 5 to 9 and in high salt solutions. Treatment with protein denaturants released all bound albicidin. These properties indicate that AlbA may be a useful affinity matrix for selective purification of albicidin antibiotics. AlbA does not bind to p-nitrophenyl butyrate or alpha-naphthyl butyrate, the substrates of the albicidin detoxification enzyme AlbD from Pantoea dispersa. The potential exists to pyramid genes for different mechanisms in transgenic plants to protect plastid DNA replication from inhibition by albicidins.
Resumo:
Albicidins are important factors in systemic pathogenesis by Xanthomonas albilineans, which causes the devastating leaf scald disease of sugar cane. They ale also of substantial interest as antibiotics that selectively block prokaryote DNA replication. Albicidin biosynthesis is highly sensitive to medium composition. An optimized, chemically defined medium (SMG3) yielded 30-fold more albicidin from half the accumulated biomass, relative to sucrose peptone (SP) medium. Phosphate starvation stimulated albicidin production in SMG3 and SP media. Addition of other amino acids, ammonium ions or peptones to the defined medium increased the growth rate of X albilineans XA3, but differentially inhibited albicidin biosynthesis. Knowledge of these factors indicates new approaches to understanding mechanisms of pathogenesis and resistance to sugar cane leaf scald disease, and to strain improvement for production of albicidin antibiotics.
Resumo:
All Tn5 insertion mutants of Xanthomonas albilineans, the cause of leaf scald disease of sugar cane, which failed to produce albicidin antibiotics failed to cause chlorosis in inoculated sugar cane but- remained resistant to albicidin. Southern analysis revealed that mutants deficient in albicidin production carried the transposon on different chromosomal restriction fragments spanning at least: 50 kb in the X. albilineans genome, which is larger than any reported cluster of genes involved in the production of a bacterial phytotoxin. Albicidin-resistant cosmid clones from a Tox(-) Tn5 insertion mutant did not carry the transposon, and the subcloned albicidin resistance gene did not hybridize to any of the restriction fragments carrying Tn5 in the Tox(-) mutants, indicating that the albicidin biosynthesis and resistance genes are not closely linked in X. albilineans.
Resumo:
Albicidin phytotoxins are pathogenicity factors in a devastating disease of sugarcane known as leaf scald, caused by Xanthomonas albilineans. A gene (albD) from Pantoea dispersa has been cloned and sequenced and been shown to code for a peptide of 235 amino acids that detoxifies albicidin, The gene shows no significant homology at the DNA or protein level to any known sequence, but the gene product contains a GxSxG motif that is conserved in serine hydrolases, The AlbD protein, purified to homogeneity by means of a glutathione S-transferase gene fusion system, showed strong esterase activity on p-nitrophenyl butyrate and released hydrophilic products during detoxification of albicidins. AlbD hydrolysis of p-nitrophenyl butyrate and detoxification of albicidins required no complex cofactors, Both processes were strongly inhibited by phenylmethylsulfonyl fluoride, a serine enzyme inhibitor, These data strongly suggest that AlbD is an albicidin hydrolase, The enzyme detoxifies albicidins efficiently over a pH range from 5.8 to 8.0, with a broad temperature optimum from 15 to 35 degrees C, Expression of albD in transformed X. albilineans strains abolished the capacity to release albicidin toxins and to incite disease symptoms in sugarcane, The gene is a promising candidate for transfer into sugarcane to confer a form of disease resistance.
Resumo:
Laboratory studies investigated the interaction between the fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin and sublethal doses of the insecticides imidacloprid and cyromazine when applied to larvae of the Colorado potato beetle, Leptinotarsa decemlinenta (Say). When second instars were fed potato leaf discs treated with sublethal doses of imidacloprid and a range of doses of B. bassiana, a synergistic action was demonstrated. Similar results were observed when larvae were sprayed directly with B. bassiana conidia and immediately fed leaf discs treated with imidacloprid. No synergistic interaction was detected when larvae were fed leaf discs treated with sublethal doses of imidacloprid 24 h after application of R. bassiana conidia to larvae. However, a synergistic interaction was detected when larvae were fed leaf discs treated with imidacloprid and sprayed with B, bassiana conidia 24 h later. Although sublethal doses of both imidacloprid and the triazine insect growth regulator (IGR) cyromazine prolonged the duration of the second instar, only imidacloprid interacted with B. bassiana to produce a synergistic response in larval mortality. In leaf consumption studies, the highest dose of B, bassiana tested promoted feeding in inoculated second instars. Feeding was inhibited when larvae were fed foliage treated with sublethal doses of imidacloprid and significantly reduced when fed foliage treated with a sublethal dose of cyromazine. Starvation of larvae for 24 h immediately after B. bassiana treatment produced a similar result to the combined treatment of B. bassiana and imidacloprid and increased the level of mycosis when compared with B. bassiana controls. Imidacloprid treatment affected neither the rate of germination of B. bassiana conidia on the insect cuticle nor the rate at which conidia were removed from the integument after application. The statistical analysis used to detect synergism and the possible role of starvation-induced stress factors underlying the observed synergistic interactions are discussed.
Resumo:
Diseases and insect pests are major causes of low yields of common bean (Phaseolus vulgaris L.) in Latin America and Africa. Anthracnose, angular leaf spot and common bacterial blight are widespread foliar diseases of common bean that also infect pods and seeds. One thousand and eighty-two accessions from a common bean core collection from the primary centres of origin were investigated for reaction to these three diseases. Angular leaf spot and common bacterial blight were evaluated in the field at Santander de Quilichao, Colombia, and anthracnose was evaluated in a screenhouse in Popayan, Colombia. By using the 15-group level from a hierarchical clustering procedure, it was found that 7 groups were formed with mainly Andean common bean accessions (Andean gene pool), 7 groups with mainly Middle American accessions (Middle American gene pool), while 1 group contained mixed accessions. Consistent with the theory of co-evolution, it was generally observed that accessions from the Andean gene pool were resistant to Middle American pathogen isolates causing anthracnoxe, while the Middle American accessions were resistant to pathogen isolates from the Andes. Different combinations of resistance patterns were found, and breeders can use this information to select a specific group of accessions on the basis of their need.
Resumo:
The ability to predict leaf area and leaf area index is crucial in crop simulation models that predict crop growth and yield. Previous studies have shown existing methods of predicting leaf area to be inadequate when applied to a broad range of cultivars with different numbers of leaves. The objectives of the study were to (i) develop generalised methods of modelling individual and total plant leaf area, and leaf senescence, that do not require constants that are specific to environments and/or genotypes, (ii) re-examine the base, optimum, and maximum temperatures for calculation of thermal time for leaf senescence, and (iii) assess the method of calculation of individual leaf area from leaf length and leaf width in experimental work. Five cultivars of maize differing widely in maturity and adaptation were planted in October 1994 in south-eastern Queensland, and grown under non-limiting conditions of water and plant nutrient supplies. Additional data for maize plants with low total leaf number (12-17) grown at Katumani Research Centre, Kenya, were included to extend the range in the total leaf number per plant. The equation for the modified (slightly skewed) bell curve could be generalised for modelling individual leaf area, as all coefficients in it were related to total leaf number. Use of coefficients for individual genotypes can be avoided, and individual and total plant leaf area can be calculated from total leaf number. A single, logistic equation, relying on maximum plant leaf area and thermal time from emergence, was developed to predict leaf senescence. The base, optimum, and maximum temperatures for calculation of thermal time for leaf senescence were 8, 34, and 40 degrees C, and apply for the whole crop-cycle when used in modelling of leaf senescence. Thus, the modelling of leaf production and senescence is simplified, improved, and generalised. Consequently, the modelling of leaf area index (LAI) and variables that rely on LAI will be improved. For experimental purposes, we found that the calculation of leaf area from leaf length and leaf width remains appropriate, though the relationship differed slightly from previously published equations.
Resumo:
Isolations from black stem lesions of sunflower growing in south-eastern Queensland yielded fungi putatively identified as species of Phoma. Pathogenicity assays showed that these isolates were capable of killing sunflower plants under glasshouse conditions. The isolates were compared with authentic cultures of Phoma macdonaldii and other isolates of Phoma taken from sunflower from around the world. Random amplified polymorphic DNA analysis showed that all the Australian isolates examined were very similar to the holotype culture of Phoma macdonaldii from Canada. Sequencing of the internal transcribed spacer regions also revealed the relatedness of the Australian isolates to the holotype. This is the first official record of P. macdonaldii in Australia.