8 resultados para Lead-induced Hypertension
em University of Queensland eSpace - Australia
Resumo:
In recognition of a central role of the kidney in long-term blood pressure control, we undertook an in-depth analysis of the relationship between blood pressure and kidney damage caused by environmental exposure to the common pollutants cadmium and lead. The subjects were 200 healthy Thais, 16 and 60 years of age (100 female non-smokers, 53 male non-smokers, and 47 male smokers). None of these subjects had been exposed to Cd or Pb in the workplace and their urinary Cd concentrations ranged from 0.4 to 37 nM, whereas their urinary Pb concentrations ranged from 0.1 to 30 nM. The prevalence of high blood pressure was 2%, 8% and 19%, respectively in subjects with low, average and high Cd-burden (linear trend chi(2) = 6.4, P = 0.01). Multiple regression analysis revealed a significant positive association between Cd-burden and blood pressure in male nonsmokers (adjusted beta = 0.31, P = 0.02) and an inverse association between blood pressure and urinary Pb excretion rate in male smokers (adjusted beta = -0.38, P = 0.005). Associations between Cd-burden and nephropathies were evidenced by increases in urinary excretion of beta 2-microglobutin (P = 0.02) and N-acetyl-beta-D-glucosaminidase (P = 0.005) in subjects with high Cd-burden, compared with the subjects with average Cd-burden. In addition, an association between Cd-related nephropathy and high blood pressure was evidenced by a 20% increase in the prevalence of high blood pressure in people with NAG-uria (linear trend chi(2) = 4.3, P = 0.04). Our present study provides first evidence for a possible link between renal tubular damage and dysfunction caused by environmental Cd exposure and increased risk of high blood pressure. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The pleiotropic effects of statins represent potential mechanisms for the treatment of end-organ damage in hypertension. This study has investigated the effects of rosuvastatin in a model of cardiovascular remodeling, the DOCA-salt hypertensive rat. Male Wistar rats weighing 300 to 330 g were uninephrectomized (UNX) or UNX and treated with DOCA (25 mg subcutaneously every fourth day) and 1% NaCl in the drinking water. Compared with UNX controls, DOCA-salt rats developed hypertension, cardiovascular hypertrophy, inflammation with perivascular and interstitial cardiac fibrosis, endothelial dysfunction, and prolongation of ventricular action potential duration at 28 days. Rosuvastatin-treated rats received 20mg/kg/d of the drug in 10% Tween 20 by oral gavage for 32 days commencing 4 days before uninephrectomy. UNX and DOCA-salt controls received vehicle only. Rosuvastatin therapy attenuated the development of cardiovascular hypertrophy, inflammation, fibrosis, and ventricular action potential prolongation, but did not modify hypertension or vascular dysfunction. We conclude that the pleiotropic effects of rosuvastatin include attenuation of aspects of cardiovascular remodeling in the DOCA-salt model of hypertension in rats without altering systolic blood pressure.
Resumo:
The role of the collective antisymmetric state in entanglement creation by spontaneous emission in a system of two non-overlapping two-level atoms has been investigated. Populations of the collective atomic states and the Wootters entanglement measure (concurrence) for two sets of initial atomic conditions are calculated and illustrated graphically. Calculations include the dipole-dipole interaction and a spatial separation between the atoms that the antisymmetric state of the system is included throughout even for small interatomic separations. It is shown that spontaneous emission can lead to a transient entanglement between the atoms even if the atoms were prepared initially in an unentangled state. It is found that the ability of spontaneous emission to create transient entanglement relies on the absence of population in the collective symmetric state of the system. For the initial state of only one atom excited, entanglement builds up rapidly in time and reaches a maximum for parameter values corresponding roughly to zero population in the symmetric state. On the other hand, for the initial condition of both atoms excited, the atoms remain unentangled until the symmetric state is depopulated. A simple physical interpretation of these results is given in terms of the diagonal states of the density matrix of the system. We also study entanglement creation in a system of two non-identical atoms of different transition frequencies. It is found that the entanglement between the atoms can be enhanced compared to that for identical atoms, and can decay with two different time scales resulting from the coherent transfer of the population from the symmetric to the antisymmetric state. In addition, it was found that a decaying initial entanglement between the atoms can display a revival behaviour.
Resumo:
At autopsy, Alzheimer's disease is characterised by the presence of amyloid plaques and neurofibrillary tangles, made up of two peptide sequences, amyloid-beta(1-40) (A beta 40) and amyloid-beta(1-42) (A beta 42). In Tyrode's solution (2 mM Ca2+), 10 mu M A beta 42 peptide almost immediately aggregates and eventually forms p-sheets. This aggregation can be inhibited with 4,5-dianilinophthalimide (DAPH). Ca2+-permeant AMPA receptors are involved in the neuronal Ca2+ influx (neurotoxicity) induced by the A beta 42 peptide in cultured neuronal cells. The Ca2+ influx observed with pre-incubated A beta 42 peptide was inhibited by DAPH. DAPH also inhibits epidermal growth factor receptor kinase, and this will prevent its development for use in Alzheimer's disease. The potential of DAPH as a small-molecule lead compound for the treatment of Alzheimer's disease next requires the separation of the structural requirements that reverse fibril formation and inhibit epidermal growth factor receptor kinase.
Resumo:
Lead compounds are known genotoxicants, principally affecting the integrity of chromosomes. Lead chloride and lead acetate induced concentration-dependent increases in micronucleus frequency in V79 cells, starting at 1.1 μ M lead chloride and 0.05 μ M lead acetate. The difference between the lead salts, which was expected based on their relative abilities to form complex acetato-cations, was confirmed in an independent experiment. CREST analyses of the micronuclei verified that lead chloride and acetate were predominantly aneugenic (CREST-positive response), which was consistent with the morphology of the micronuclei (larger micronuclei, compared with micronuclei induced by a clastogenic mechanism). The effects of high concentrations of lead salts on the microtubule network of V79 cells were also examined using immunofluorescence staining. The dose effects of these responses were consistent with the cytotoxicity of lead(II), as visualized in the neutral-red uptake assay. In a cell-free system, 20-60 μ M lead salts inhibited tubulin assembly dose-dependently. The no-observed-effect concentration of lead(II) in this assay was 10 μ M. This inhibitory effect was interpreted as a shift of the assembly/disassembly steady-state toward disassembly, e.g., by reducing the concentration of assembly-competent tubulin dimers. The effects of lead salts on microtubule-associated motor-protein functions were studied using a kinesin-gliding assay that mimics intracellular transport processes in vitro by quantifying the movement of paclitaxel-stabilized microtubules across a kinesin-coated glass surface. There was a dose-dependent effect of lead nitrate on microtubule motility. Lead nitrate affected the gliding velocities of microtubules starting at concentrations above 10 μ M and reached half-maximal inhibition of motility at about 50 μ M. The processes reported here point to relevant interactions of lead with tubulin and kinesin at low dose levels. Environ. Mal. Mutagen. 45:346-353, 2005. © 2005 Wiley-Liss, Inc.
Resumo:
The mechanism of pectin gelation depends on the degree of methoxylation. High methoxyl pectin gels due to hydrophobic interactions and hydrogen bonding between pectin molecules. Low methoxyl pectin forms gels in the presence of di- and polyvalent cations which cross link and neutralise the negative charges of the pectin molecule. Monovalent cations normally do not lead to gel formation with high methoxyl pectin solutions free of divalent cations, especially Ca. The present study found that alkali (NaOH or KOH) added to high methoxyl pectin leads to gel formation in a concentration-depended manner. It was also found that monovalent cations (Na and K) induce gelation of low methoxyl pectin and the time required for gel formation (setting time) depends on the cation concentration. The results indicate that a combined char-e neutralisation and ionic strength effect is responsible for the monovalent cation-induced gelation of pectin. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Cadmium (Cd) is a metal toxin of continuing worldwide concern. Daily intake of Cd, albeit in small quantities, is associated with a number of adverse health effects which are attributable to distinct pathological changes in a variety of tissues and organs. In the present review, we focus on its renal tubular effects in people who have been exposed environmentally to Cd at levels below the provisional tolerable intake level set for the toxin. We highlight the data linking such low-level Cd intake with tubular injury, altered abundance of cytochromes P450 (CYPs) in the kidney and an expression of a hypertensive phenotype. We provide updated knowledge on renal and vascular effects of the eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and eicosatrienoic acids (EETs), which are biologically active metabolites from arachidonate metabolism mediated by certain CYPs in the kidney. We note the ability of Cd to elicit oxidative stress and to alter metal homeostasis notably of zinc which may lead to augmentation of the defense mechanisms involving induction of the antioxidant enzyme heme oxygenase-1 (HO-1) and the metal binding protein metallothionein (MT) in the kidney. We hypothesize that renal Cd accumulation triggers the host responses mediated by HO-I and MT in an attempt to protect the kidney against injurious oxidative stress and to resist a rise in blood pressure levels. This hypothesis predicts that individuals with less active HO-1 (caused by the HO-1 genetic polymorphisms) are more likely to have renal injury and express a hypertensive phenotype following chronic ingestion of low-level Cd, compared with those having more active HO-1. Future analytical and molecular epidemiologic research should pave the way to the utility of induction of heme oxygenases together with dietary antioxidants in reducing the risk of kidney injury and hypertension in susceptible people.
Resumo:
Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc: as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (> 42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.