188 resultados para Lattice Integrable Models

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The A(n-1)((1)) trigonometric vertex model with generic non-diagonal boundaries is studied. The double-row transfer matrix of the model is diagonalized by algebraic Bethe ansatz method in terms of the intertwiner and the corresponding face-vertex relation. The eigenvalues and the corresponding Bethe ansatz equations are obtained.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain a class of non-diagonal solutions of the reflection equation for the trigonometric A(n-1)((1)) vertex model. The solutions can be expressed in terms of intertwinner matrix and its inverse, which intertwine two trigonometric R-matrices. In addition to a discrete (positive integer) parameter l, 1 less than or equal to l less than or equal to n, the solution contains n + 2 continuous boundary parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct the Drinfeld twists ( factorizing F-matrices) of the gl(m-n)-invariant fermion model. Completely symmetric representation of the pseudo-particle creation operators of the model are obtained in the basis provided by the F-matrix ( the F-basis). We resolve the hierarchy of the nested Bethe vectors in the F-basis for the gl(m-n) supersymmetric model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the recent progress on the construction of the determinant representations of the correlation functions for the integrable supersymmetric fermion models. The factorizing F-matrices (or the so-called F-basis) play an important role in the construction. In the F-basis, the creation (and the annihilation) operators and the Bethe states of the integrable models are given in completely symmetric forms. This leads to the determinant representations of the scalar products of the Bethe states for the models. Based on the scalar products, the determinant representations of the correlation functions may be obtained. As an example, in this review, we give the determinant representations of the two-point correlation function for the U-q(gl(2 vertical bar 1)) (i.e. q-deformed) supersymmetric t-J model. The determinant representations are useful for analyzing physical properties of the integrable models in the thermodynamical limit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Izergin-Korepin model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the twisted quantum affine algebra U-q[((2))(2)]. We give the bosonization of the vacuum state with zero particle content. Excitation states are given by the action of the vertex operators on the vacuum state. We derive the boundary S-matrix. We give an integral expression of the correlation functions of the boundary model, and derive the difference equations which they satisfy. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new algebraic Bethe ansatz scheme is proposed to diagonalize classes of integrable models relevant to the description of Bose-Einstein condensation in dilute alkali gases. This is achieved by introducing the notion of Z-graded representations of the Yang-Baxter algebra. (C) 2003 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The central elements of the algebra of monodromy matrices associated with the Z(n) R-matrix are studied. When the crossing parameter w takes a special rational value w = n/N, where N and n are positive coprime integers, the center is substantially larger than that in the generic case for which the quantum determinant provides the center. In the trigonometric limit, the situation corresponds to the quantum group at roots of unity. This is a higher rank generalization of the recent results by Belavin and Jimbo. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We construct the Drinfeld twists (factorizing F-matrices) for the supersymmetric t-J model. Working in the basis provided by the F-matrix (i.e. the so-called F-basis), we obtain completely symmetric representations of the monodromy matrix and the pseudo-particle creation operators of the model. These enable us to resolve the hierarchy of the nested Bethe vectors for the gl(2\1) invariant t-J model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important feature of improving lattice gas models and classical isotherms is the incorporation of a pore size dependent capacity, which has hitherto been overlooked. In this paper, we develop a model for predicting the temperature dependent variation in capacity with pore size. The model is based on the analysis of a lattice gas model using a density functional theory approach at the close packed limit. Fluid-fluid and solid-fluid interactions are modeled by the Lennard-Jones 12-6 potential and Steele's 10-4-3, potential respectively. The capacity of methane in a slit-shaped carbon pore is calculated from the characteristic parameters of the unit cell, which are extracted by minimizing the grand potential of the unit cell. The capacities predicted by the proposed model are in good agreement with those obtained from grand canonical Monte Carlo simulation, for pores that can accommodate up to three adsorbed layers. Single particle and pair distributions exhibit characteristic features that correspond to the sequence of buckling and rhombic transitions that occur as the slit pore width is increased. The model provides a useful tool to model continuous variation in the microstructure of an adsorbed phase, namely buckling and rhombic transitions, with increasing pore width. (C) 2002 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The XXZ Gaudin model with generic integrable boundaries specified by generic non-diagonal K-matrices is studied. The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The eigenvalues and the corresponding Bethe ansatz equations are obtained. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A generalised ladder operator is used to construct the conserved operators for any one-dimensional lattice model derived from the Yang-Baxter equation. As an example, the low order conserved operators for the XYh model are calculated explicitly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].