9 resultados para Latex-based Portland cement system

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

User requirements of multimedia authentication are various. In some cases, the user requires an authentication system to monitor a set of specific areas with respective sensitivity while neglecting other modification. Most current existing fragile watermarking schemes are mixed systems, which can not satisfy accurate user requirements. Therefore, in this paper we designed a sensor-based multimedia authentication architecture. This system consists of sensor combinations and a fuzzy response logic system. A sensor is designed to strictly respond to given area tampering of a certain type. With this scheme, any complicated authentication requirement can be satisfied, and many problems such as error tolerant tamper method detection will be easily resolved. We also provided experiments to demonstrate the implementation of the sensor-based system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the implementation of a TMR (Triple Modular Redundant) microprocessor system on a FPGA. The system exhibits true redundancy in that three instances of the same processor system (both software and hardware) are executed in parallel. The described system uses software to control external peripherals and a voter is used to output correct results. An error indication is asserted whenever two of the three outputs match or all three outputs disagree. The software has been implemented to conform to a particular safety critical coding guideline/standard which is popular in industry. The system was verified by injecting various faults into it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of point mutations or single nucleotide polymorphisms (SNPs) is important in relation to disease susceptibility or detection in pathogens of mutations determining drug resistance or host range. There is an emergent need for rapid detection methods amenable to point-of-care applications. The purpose of this study was to reduce to practice a novel method for SNP detection and to demonstrate that this technology can be used downstream of nucleic acid amplification. The authors used a model system to develop an oligonucleotide-based SNP detection system on nitrocellulose lateral flow strips. To optimize the assay they used cloned sequences of the herpes simplex virus-1 (HSV-1) DNA polymerase gene into which they introduced a point mutation. The assay system uses chimeric polymerase chain reaction (PCR) primers that incorporate hexameric repeat tags ("hexapet tags"). The chimeric sequences allow capture of amplified products to predefined positions on a lateral flow strip. These "hexapet" sequences have minimal cross-reactivity and allow specific hybridization-based capture of the PCR products at room temperature onto lateral flow strips that have been striped with complementary hexapet tags. The allele-specific amplification was carried out with both mutant and wild-type primer sets present in the PCR mix ("competitive" format). The resulting PCR products carried a hexapet tag that corresponded with either a wild-type or mutant sequence. The lateral flow strips are dropped into the PCR reaction tube, and mutant sequence and wild-type sequences diffuse along the strip and are captured at the corresponding position on the strip. A red line indicative of a positive reaction is visible after 1 minute. Unlike other systems that require separate reactions and strips for each target sequence, this system allows multiplex PCR reactions and multiplex detection on a single strip or other suitable substrates. Unambiguous visual discrimination of a point mutation under room temperature hybridization conditions was achieved with this model system in 10 minutes after PCR. The authors have developed a capture-based hybridization method for the detection and discrimination of HSV-1 DNA polymerase genes that contain a single nucleotide change. It has been demonstrated that the hexapet oligonucleotides can be adapted for hybridization on the lateral flow strip platform for discrimination of SNPs. This is the first step in demonstrating SNP detection on lateral flow using the hexapet oligonucleotide capture system. It is anticipated that this novel system can be widely used in point-of-care settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously developed replicon vectors derived from the Australian flavivirus Kunjin that have a unique noncytopathic nature and have been shown to direct prolonged high-level expression of encoded heterologous genes in vitro and in vivo and to induce strong and long-lasting immune responses to encoded immunogens in mice. To facilitate further applications of these vectors in the form of virus-like particles (VLPs), we have now generated a stable BHK packaging cell line, tetKUNCprME, carrying a Kunjin structural gene cassette under the control of a tetracycline-inducible promoter. Withdrawal of tetracycline from the medium resulted in production of Kunjin structural proteins that were capable of packaging transfected and self-amplified Kunjin replicon RNA into the secreted VLPs at titers of up to 1.6 x 10(9) VLPs per ml. Furthermore, secreted KUN replicon VLPs from tetKUNCprME cells could be harvested continuously for as long as 10 days after RNA transfection, producing a total yield of more than 1010 VLPs per 106 transfected cells. Passaging of VLPs on Vero cells or intracerebral injection into 2- to 4-day-old suckling mice illustrated the complete absence of any infectious Kunjin virus. tetKUNCprME cells were also capable of packaging replicon RNA from closely and distantly related flaviviruses, West Nile virus and dengue virus type 2, respectively. The utility of high-titer KUN replicon VLPs was demonstrated by showing increasing CD8(+)-T-cell responses to encoded foreign protein with increasing doses of KUN VLPs. A single dose of 2.5 x 10(7) VLPs carrying the human respiratory syncytial virus M2 gene induced 1,400 CD8 T cells per 10(6) splenocytes in an ex vivo gamma interferon enzyme-linked immunospot assay. The packaging cell line thus represents a significant advance in the development of the noncytopathic Kunjin virus replicon-based gene expression system and may be widely applicable to the basic studies of flavivirus RNA packaging and virus assembly as well as to the development of gene expression systems based on replicons from different flaviviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software Configuration Management is the discipline of managing large collections of software development artefacts from which software products are built. Software configuration management tools typically deal with artefacts at fine levels of granularity - such as individual source code files - and assist with coordination of changes to such artefacts. This paper describes a lightweight tool, designed to be used on top of a traditional file-based configuration management system. The add-on tool support enables users to flexibly define new hierarchical views of product structure, independent of the underlying artefact-repository structure. The tool extracts configuration and change data with respect to the user-defined hierarchy, leading to improved visibility of how individual subsystems have changed. The approach yields a range of new capabilities for build managers, and verification and validation teams. The paper includes a description of our experience using the tool in an organization that builds large embedded software systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B-type natriuretic peptide (BNP) is the first biomarker of proven value in screening for left ventricular dysfunction. The availability of point-of-care testing has escalated clinical interest and the resultant research is defining a role for BNP in the investigation and treatment of critically ill patients. This review was undertaken with the aim of collecting and assimilating current evidence regarding the use of BNP assay in the evaluation of myocardial dysfunction in critically ill humans. The information is presented in a format based upon organ system and disease category. BNP assay has been studied in a spectrum of clinical conditions ranging from acute dyspnoea to subarachnoid haemorrhage. Its role in diagnosis, assessment of disease severity, risk stratification and prognostic evaluation of cardiac dysfunction appears promising, but requires further elaboration. The heterogeneity of the critically ill population appears to warrant a range of cut-off values. Research addressing progressive changes in BNP concentration is hindered by infrequent assay and appears unlikely to reflect the critically ill patient's rapidly changing haemodynamics. Multi-marker strategies may prove valuable in prognostication and evaluation of therapy in a greater variety of illnesses. Scant data exist regarding the use of BNP assay to alter therapy or outcome. It appears that BNP assay offers complementary information to conventional approaches for the evaluation of cardiac dysfunction. Continued research should augment the validity of BNP assay in the evaluation of myocardial function in patients with life-threatening illness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes