15 resultados para Laterally Loaded Pile
em University of Queensland eSpace - Australia
Resumo:
The lack of standardized tests of central auditory processing disorder (CAPD) in South Africa (SA) led to the formation of a SA CAPD Taskforce, and the interim development of a "low linguistically loaded" CAPD test protocol using test recordings from the 'Tonal and Speech Materials for Auditory Perceptual Assessment Disc 2.0'. This study inferentially compared the performance of 16 SA English first, and 16 SA English second, language adult speakers on this test protocol, and descriptively compared their performances to previously published American normative data. Comparisons between the SA English first and second language speakers showed a poorer right ear performance (p < .05) by the second language speakers on the two-pair dichotic digits test only. Equivalent performances (p < .05) were observed on the left ear performance on the two pair dichotic digits test, and the frequency patterns test, the duration patterns test, the low-pass filtered speech test, the 45% time compressed speech test, the speech masking level difference test, and the consonant vowel consonant (CVC) binaural fusion test. Comparisons between the SA English and the American normative data showed many large differences (up to 37.1% with respect to predicted pass criteria as calculated by mean-2SD cutoffs), with the SA English speakers performing both better and worse depending on the test involved. As a result, the American normative data was not considered appropriate for immediate use as normative data in SA. Instead, the preliminary data provided in this study was recommended as interim normative data for both SA English first and second language adult speakers, until larger scale SA normative data can be obtained.
Resumo:
Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients-therefore sampling rates-using the dimensionless Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data. The study demonstrates that for trace concentrations (sub 0.1 mu g/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.
Resumo:
Radio-frequency ( RF) coils are designed such that they induce homogeneous magnetic fields within some region of interest within a magnetic resonance imaging ( MRI) scanner. Loading the scanner with a patient disrupts the homogeneity of these fields and can lead to a considerable degradation of the quality of the acquired image. In this paper, an inverse method is presented for designing RF coils, in which the presence of a load ( patient) within the MRI scanner is accounted for in the model. To approximate the finite length of the coil, a Fourier series expansion is considered for the coil current density and for the induced fields. Regularization is used to solve this ill-conditioned inverse problem for the unknown Fourier coefficients. That is, the error between the induced and homogeneous target fields is minimized along with an additional constraint, chosen in this paper to represent the curvature of the coil windings. Smooth winding patterns are obtained for both unloaded and loaded coils. RF fields with a high level of homogeneity are obtained in the unloaded case and a limit to the level of homogeneity attainable is observed in the loaded case.
Resumo:
The purpose of this study was to evaluate the effect of cyclosporine (CyA)-cyclodextrin (CD) complex incorporated within PLGA inicrospheres on microsphere characteristics, with particular emphasis on drug release kinetics. For this purpose, microspheres encapsulated with CyA and those loaded by CyA-CD complex were prepared by solvent evaporation and multiple emulsification solvent evaporation methods, respectively. Morphology, size, encapsulation efficiency and drug release pattern from microspheres were evaluated. Also, physicochemical properties of drug inside microspheres were characterized by differential scanning calorimetry (DSC) and infrared spectroscopy (IR) studies. Scanning electron microscopy (SEM) studies showed that microspheres encapsulated with CyA had islands on the microsphere surface but the islands were not seen on the surface of microspheres loaded by complex. Size range varied from 1 to 25 mu m for CyA encapsulated microspheres and 1 to 50 mu m for complex loaded microspheres. The release of CyA was biphasic with an initial more rapid release phase followed by a slower phase but drug release was twice as fast for complex loaded microspheres. IR studies did not indicate any chemical interaction between the components of microspheres and DSC thermograms revealed that CyA was present either in its amorphous state in microspheres or the presence of CyA as an inclusion complex within microspheres loaded by complex. In conclusion, using CyA as an inclusion complex with CD within microspheres can affect microsphere characteristics and drug release and it is possible to modify microsphere properties like drug release by incorporating CDs as complexing agents.
Resumo:
Pulse transit time (PTT) is a non-invasive measure, defined as time taken for the pulse pressure waves to travel from the R-wave of electrocardiogram to a selected peripheral site. Baseline PTT value is known to be influenced by physiologic variables like heart rate (HR), blood pressure (BP) and arterial compliance (AC). However, few quantitative data are available describing the factors which can influence PTT measurements in a child during breathing. The aim of this study was to investigate the effects of changes in breathing efforts on PTT baseline and fluctuations. Two different inspiratory resistive loading (IRL) devices were used to simulate loaded breathing in order to induce these effects. It is known that HR can influence the normative PTT value however the effect of HR variability (HRV) is not well-studied. Two groups of 3 healthy children ( 0.05) HR changes during all test activities. Results showed that HRV is not the sole contributor to PTT variations and suggest that changes in other physiologic parameters are also equally important. Hence, monitoring PTT measurement can be indicative of these associated changes during tidal or increased breathing efforts in healthy children.