51 resultados para Laser emissions
em University of Queensland eSpace - Australia
Resumo:
The present study examined effects of ear asymmetry, handedness, and gender on distortion-product otoacoustic emissions (DPOAEs) obtained from schoolchildren. A total of 1003 children (528 boys and 475 girls), with a mean age of 6.2 years (SD = 0.4, range = 5.2-7.9 years), were tested in a quiet room at their schools using the GSI-60 DPOAE system. A distortion-product (DP)-gram was obtained for each ear, with f2 varying from 1.1 to 6.0 kHz and the ratio of f2/f1 at 1.21. The signal-to-noise ratios (SNRs) (DPOAE amplitude minus the mean noise floor) at the tested frequencies 1.1, 1.5, 1.9, 2.4, 3.0, 3.8, 4.8, and 6.0 kHz were measured. The results revealed a small but significant difference in SNR between ears, with right ears showing a higher mean SNR than left ears at 1.9, 3.0, 3.8, and 6.0 kHz. At these frequencies, the difference in mean SNR between ears was less than 1 dB. A significant gender effect was also found. Girls exhibited a higher SNR than boys at 3.8, 4.8, and 6.0 kHz. The difference in mean SNR, as a result of the gender effect, was about 1 to 2 dB at these frequencies. There was no significant difference in mean SNR between left-handed and right-handed children for all tested frequencies.
Resumo:
This study examined the test performance of distortion product otoacoustic emissions (DPOAEs) when used as a screening tool in the school setting. A total of 1003 children (mean age 6.2 years, SD = 0.4) were tested with pure-tone screening, tympanometry, and DPOAE assessment. Optimal DPOAE test performance was determined in comparison with pure-tone screening results using clinical decision analysis. The results showed hit rates of 0.86, 0.89, and 0.90, and false alarm rates of 0.52, 0.19, and 0.22 for criterion signal-to-noise ratio (SNR) values of 4, 5, and 11 dB at 1.1, 1.9, and 3.8 kHz respectively. DPOAE test performance was compromised at 1.1 kHz. In view of the different test performance characteristics across the frequencies, the use of a fixed SNR as a pass criterion for all frequencies in DPOAE assessments is not recommended. When compared to pure tone plus tympanometry results, the DPOAEs showed deterioration in test performance, suggesting that the use of DPOAEs alone might miss children with subtle middle ear dysfunction. However, when the results of a test protocol, which incorporates both DPOAEs and tympanometry, were used in comparison with the gold standard of pure-tone screening plus tympanometry, test performance was enhanced. In view of its high performance, the use of a protocol that includes both DPOAEs and tympanometry holds promise as a useful tool in the hearing screening of schoolchildren, including difficult-to-test children.
Resumo:
A narrow absorption feature in an atomic or molecular gas (such as iodine or methane) is used as the frequency reference in many stabilized lasers. As part of the stabilization scheme an optical frequency dither is applied to the laser. In optical heterodyne experiments, this dither is transferred to the RF beat signal, reducing the spectral power density and hence the signal to noise ratio over that in the absence of dither. We removed the dither by mixing the raw beat signal with a dithered local oscillator signal. When the dither waveform is matched to that of the reference laser the output signal from the mixer is rendered dither free. Application of this method to a Winters iodine-stabilized helium-neon laser reduced the bandwidth of the beat signal from 6 MHz to 390 kHz, thereby lowering the detection threshold from 5 pW of laser power to 3 pW. In addition, a simple signal detection model is developed which predicts similar threshold reductions.
Resumo:
The transient statistics of a gain-switched coherently pumped class-C laser displays a linear correlation between the first passage time and subsequent peak intensity. Measurements are reported showing a positive or negative sign of this linear correlation, controlled through the switching time and the laser detuning. Further measurements of the small-signal laser gain combined with calculations involving a three-level laser model indicate that this sign fundamentally depends upon the way the laser inversion varies during the gain switching, despite the added dynamics of the laser polarization in the class-C laser. [S1050-2947(97)07112-6].
Resumo:
We consider one source of decoherence for a single trapped ion due to intensity and phase fluctuations in the exciting laser pulses. For simplicity we assume that the stochastic processes involved are white noise processes, which enables us to give a simple master equation description of this source of decoherence. This master equation is averaged over the noise, and is sufficient to describe the results of experiments that probe the oscillations in the electronic populations as energy is exchanged between the internal and electronic motion. Our results are in good qualitative agreement with recent experiments and predict that the decoherence rate will depend on vibrational quantum number in different ways depending on which vibrational excitation sideband is used.
Resumo:
Control of chaos in the single-mode optically pumped far-infrared (NH3)-N-15 laser is experimentally demonstrated using continuous time-delay control. Both the Lorenz spiral chaos and the detuned period-doubling chaos exhibited by the laser have been controlled. While the laser is in the Lorenz spiral chaos regime the chaos has been controlled both such that the laser output is cw, with corrections of only a fraction of a percent necessary to keep it there, and to period one. The laser has also been controlled while in the period-doubling chaos regime, to both the period-one and -two states.
Resumo:
In a recent paper Meyer and Yeoman [Phys. Rev. Lett. 79, 2650 (1997)] have shown that the resonance fluorescence from two atoms placed in a cavity and driven by an incoherent field can produce an interference pattern with a dark center. We study the fluorescence from two coherently driven atoms in free space and show that this system can also produce an interference pattern with a dark center. This happens when the atoms are in nonequivalent positions in the driving: field, i.e., the atoms experience different intensities and phases of the driving field. We discuss the role of the interatomic interactions in this process and find that the interference pattern with a dark center results from the participation of the antisymmetric state in the dynamics of the driven two-atom system.
Resumo:
There are some interesting connections between the theory of quantum computation and quantum measurement. As an illustration, we present a scheme in which an ion trap quantum computer can be used to make arbitrarily accurate measurements of the quadrature phase variables for the collective vibrational motion of the ion. We also discuss some more general aspects of quantum computation and measurement in terms of the Feynman-Deutsch principle.
Resumo:
Researchers have recently reported the effects of age, sex, ear asymmetry, and subject's activity status on transient evoked otoacoustic emissions (TEOAEs). The present study aimed to expand upon such reports by describing the characteristics of TEOAE spectra obtained from a cohort of 607 two-month-old infants in community child health clinics. Results indicated significant sex, ear and activity state effects on the signal:noise ratio, response. whole wave and band reproducibility values. These findings suggest the need for TEOAE normative data to be expressed as a function of sex, ear, and activity state of infants. These characteristics of TEOAE spectra may shape future investigations into appropriate pass-fail criteria for two-month-old infants.
Resumo:
The free running linewidth of an external cavity grating feedback diode laser is on the order of a few megahertz and is limited by the mechanical and acoustic vibrations of the external cavity. Such frequency fluctuations can be removed by electronic feedback. We present a hybrid stabilisation technique that uses both a Fabry-Perot confocal cavity and an atomic resonance to achieve excellent short and long term frequency stability. The system has been shown to reduce the laser linewidth of an external cavity diode laser by an order of magnitude to 140 kHz, while limiting frequency excursions to 60 kHz relative to an absolute reference over periods of several hours. The scheme also presents a simple way to frequency offset two lasers many gigahertz apart which should find a use in atom cooling experiments, where hyperfine ground-state frequency separations are often required.
Resumo:
Great potential has recently been demonstrated for the application of transient evoked otoacoustic emissions (TEOAEs) in screening the hearing of school-aged children. The present study aimed to describe the range of TEOAE values obtained from a large cohort of 6-year-old children in school settings. Results indicated significant sex and ear asymmetry effects on signal-to-noise ratio, response, whole wave reproducibility, band reproducibility and noise levels. A prior history of ear infections was also shown to influence response level, whole wave reproducibility and band reproducibility. The sex, ear and history specific normative data tables derived may contribute to future improvements in the accuracy of hearing screening for 6-year-old school children.
Resumo:
A novel flow-tagging technique is presented which was employed to measure gas velocities in the free stream of a shock tube. This method is based on the laser spectroscopic techniques of Laser-Enhanced Ionisation (LEI) and Laser-Induced Fluorescence (LIF). The flow in the shock tube is seeded with small amounts of sodium, and LEI is used to produce a substantial depletion of neutral sodium atom concentration in a well-defined region of the flow, by using two wavelength-resonance excitation and subsequent collisional ionisation. At a specific time delay, single-laser-pulse planar LIF is utilised to produce a two-dimensional (2-D) inverse image of the depleted tagged region downstream of the flow. By measuring the displacement of the tagged region, free stream velocities in a shock tube were determined. Large variations in the concentration of sodium seeded into the flow were observed and even in the presence of these large variations accurate free-stream velocity measurements were obtained. The experimentally determined value for velocity compares very well with the predicted velocity.