4 resultados para Larval morphology

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. We investigated the morphological responses of larval Rana lessonae to the presence of two predators with substantially different prey-detection and capture techniques; larval dragonflies (Aeshna cyanea) and the Pumpkinseed Sunfish (Lepomis gibossus). 2. We also examined the functional implications of any predator-induced morphological variation on their swimming ability by assessing performance during the initial stages of a startle response. 3. We found the morphological responses of larval R. lessonae were dependent on the specific predator present. Tadpoles raised in the presence of dragonfly larvae preying upon conspecific tadpoles developed total tail heights 5.4% deeper and tail muscles 4.7% shallower than tadpoles raised in a non-predator environment, while tadpoles raised with sunfish possessed tails 2% shallower and tail muscles 2.5% higher than non-predator-exposed tadpoles. 4. Predator-induced morphological variation also significantly influenced swimming performance. Tadpoles raised with sunfish possessed swimming speeds 9.5 and 14.6% higher than non- and dragonfly predator groups, respectively. 5. Thus, the expression of these alternative predator-morphs leads to a functional trade-off in performance between the different environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metamorphosis is both an ecological and a developmental genetic transition that an organism undergoes as a normal part of ontogeny. Many organisms have the ability to delay metamorphosis when conditions are unsuitable. This strategy carries obvious benefits, but may also result in severe consequences for older larvae that run low on energy. In the marine environment, some lecithotrophic larvae that have prolonged periods in the plankton may begin forming postlarval and juvenile structures that normally do not appear until after settlement and the initiation of metamorphosis. This precocious activation of the postlarval developmental program may reflect an adaptation to increase the survival of older, energy-depleted larvae by allowing them to metamorphose more quickly. In the present study, we investigate morphological and genetic consequences of delay of metamorphosis in larvae of Herdmania momus (a solitary stolidobranch ascidian). We observe significant morphological and genetic changes during prolonged larval life, with older larvae displaying significant changes in RNA levels, precocious migration of mesenchyme cells, and changes in larval shape including shortening of the tail. While these observations suggest that the older H. momus larvae are functionally different from younger larvae and possibly becoming more predisposed to undergo metamorphosis, we did not find any significant differences in gene expression levels between postlarvae arising from larvae that metamorphosed as soon as they were competent and postlarvae developing from larvae that postponed metamorphosis. This recalibration, or convergence, of transcript levels in the early postlarva suggests that changes that occur during prolonged larval life of H. momus are not necessarily associated with early activation of adult organ differentiation. Instead, it suggests that an autonomous developmental program is activated in H. momus upon the induction of metamorphosis regardless of the history of the larva.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of gymnolaemate Ectoprocta includes a larval stage of either the coronate or the cyphonautes type. Herein, we provide the first description of the larval neural anatomy of a coronate larva using immunocytochemical methods. We used antibodies against the neurotransmitters serotonin and FMRFamide and followed the fate of immunoreactive cells through metamorphosis. The larval serotonergic nervous system of Triphyllozoon mucronatum consists of an apical commissure, one pair of lateral axons, a coronate nerve net, an internal nerve mesh, and one pair of axons innervating the frontal organ. FMRFamide is only found in the larval commissure and in the lateral axons. The entire serotonergic and FMRFamidergic nervous system is lost during metamorphosis and the adult neural structures form independent of the larval ones. In the postlarval zooid, both neurotransmitters are detected in the cerebral commissure, in cell bodies located at the base of the lophophore, and in neurites connecting these somata to the cerebral commissure. These findings differ significantly from that observed in other lophotrochozoans, where certain larval neural features are either incorporated in the adult nervous system and/or have inductive functions during its ontogeny. The occurrence of a larval commissure and the lack of a serotonergic or FMRFamidergic apical organ in T. mucronatum are unique among lophotrochozoan larvae, which usually have a distinct apical organ containing serotonergic cells. Our data show that the larval neuroanatomy and the processes that underlie the reorganization of larval organ systems during metamorphosis may vary much more among lophotrochozoan taxa than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To survive adverse or unpredictable conditions in the ontogenetic environment, many organisms retain a level of phenotypic plasticity that allows them to meet the challenges of rapidly changing conditions. Larval anurans are widely known for their ability to modify behaviour, morphology and physiological processes during development, making them an ideal model system for studies of environmental effects on phenotypic traits. Although temperature is one of the most important factors influencing the growth, development and metamorphic condition of larval anurans, many studies have failed to include ecologically relevant thermal fluctuations among their treatments. We compared the growth and age at metamorphosis of striped marsh frogs Limnodynastes peronii raised in a diurnally fluctuating thermal regime and a stable regime of the same mean temperature. We then assessed the long-term effects of the larval environment on the morphology and performance of post-metamorphic frogs. Larval L. peronii from the fluctuating treatment were significantly longer throughout development and metamorphosed about 5 days earlier. Frogs from the fluctuating group metamorphosed at a smaller mass and in poorer condition compared with the stable group, and had proportionally shorter legs. Frogs from the fluctuating group showed greater jumping performance at metamorphosis and less degradation in performance during a 10-week dormancy. Treatment differences in performance could not be explained by whole-animal morphological variation, suggesting improved contractile properties of the muscles in the fluctuating group.