71 resultados para Larval Tissues
em University of Queensland eSpace - Australia
Resumo:
In the marine environment a wide range of invertebrates have a pelagobenthic lifecycle that includes planktonic larval and benthic adult phases. Transition between these morphologically and ecologically distinct phases typically occurs when the developmentally competent larva comes into contact with a species-specific environmental cue. This cue acts as a morphogenetic signal that induces the completion of the postlarval/juvenile/adult developmental program at metamorphosis. The development of competence often occurs hours to days after the larva is morphologically mature. In the non-feeding - lecithotrophic - larvae of the ascidian Herdmania curvata and the gastropod mollusc Haliotis asinina, gene expression patterns in pre-competent and competent stages are markedly different, reflecting the different developmental states of these larval stages. For example, the expression of Hemps, an EGF-like signalling peptide required for the induction of Herdmania metamorphosis, increases in competent larvae. Induction of settlement and metamorphosis results in further changes in developmental gene expression, which apparently is necessary for the complete transformation of the larval body plan into the adult form.
Resumo:
Sodium dodecyl sulfate (SDS) is commonly used to extract polyhedra from infected cells and diseased dead larval tissues. It was found, however, that 80% of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) polyhedra produced via cell culture were damaged after 30 min of 0.5% SDS treatment whereas only 20% of in vivo produced polyhedra were damaged by the same treatment. Transmission and scanning electron microscopy revealed that the damaged polyhedra had lost their polyhedron envelopes and virions were dislodged from the polyhedrin matrix, leaving empty spaces that were previously occupied by the occluded virions. Up to 20% in vitro produced polyhedra were resistant to SDS and remained intact, even after a 24 h exposure to SDS. This sensitivity to SDS was observed across a range of cell culture media, including serum supplemented media. Electron microscopy also revealed that the inferior polyhedron envelope of in vitro produced polyhedra is likely due to poor interaction between the polyhedron envelope, polyhedron envelope protein (PEP), and polyhedrin matrix. The PEP gene was cloned and sequenced and mutations in this gene were ruled out as an explanation. In vitro produced polyhedra that were passed through insect larva once were resistant to SDS, indicating that a critical component is lacking in insect cell culture medium used for producing HaSNPV or the cells growing in culture are inefficient in some ways in relation to production of polyhedra. (C) 2002 Elsevier Science (USA). All rights reserved.
Gene expression during early ascidian metamorphosis requires signaling by Hemps, an EGF-like protein
Resumo:
Hemps, a novel epidermal growth factor (EGF)-like protein, is expressed during larval development and early metamorphosis in the ascidian Herdmania curvata and plays a direct role in triggering metamorphosis. In order to identify downstream genes in the Hemps pathway we used a gene expression profiling approach, in which we compared post-larvae undergoing normal metamorphosis with larval metamorphosis blocked with an anti-Hemps antibody. Molecular profiling revealed that there are dynamic changes in gene expression within the first 30 minutes of normal metamorphosis with a significant portion of the genome (approximately 49%) being activated or repressed. A more detailed analysis of the expression of 15 of these differentially expressed genes through embryogenesis, larval development and metamorphosis revealed that while there is a diversity of temporal expression patterns, a number of genes are transiently expressed during larval development and metamorphosis. These and other differentially expressed genes were localised to a range of specific cell and tissue types in Herdmania larvae and post-larvae. The expression of approximately 24% of the genes that were differentially expressed during early metamorphosis was affected in larvae treated with the anti-Hemps antibody. Knockdown of Hemps activity affected the expression of a range of genes within 30 minutes of induction, suggesting that the Hemps pathway directly regulates early response genes at metamorphosis. In most cases, it appears that the Hemps pathway contributes to the modulation of gene expression, rather than initial gene activation or repression. A total of 151 genes that displayed the greatest alterations in expression in response to anti-Hemps antibody were sequenced. These genes were implicated in a range of developmental and physiological roles, including innate immunity, signal transduction and in the regulation of gene transcription. These results suggest that there is significant gene activity during the very early stages of H. curvata metamorphosis and that the Hemps pathway plays a key role in regulating the expression of many of these genes.
Resumo:
We report the spatial expression patterns of five anterior Hox genes during larval development of the gastropod mollusc Haliotis asinina, an unsegmented spiralian lophotrochozoan. Molecular alignments and phylogenetic analysis indicate that these genes are homologues of Drosophila HOM-C genes labial, proboscipedia, zen, Deformed, and Sex combs reduced, the abalone genes are named Has-Hox1, -Hox2, -Hox3, -Hox4, and -Hox5. Has-Hox transcripts are first detected in the free-swimming trochophore larval stage- and restricted to the posttrochal ectoderm. Has-Hox2, -Hox3, and -Hox4 are expressed in bilaterally symmetrical and overlapping patterns in presumptive neuroectodermal cells on the ventral side of the trochophore. Has-Hox1 expression is restricted to a ring of cells on the dorsoposterior surface, corresponding to the outer mantle edge where new larval shell is being synthesized. There appears to be little change in the expression domains of these Has-Hox genes in pre- and posttorsional veliger larvae, with expression maintained in ectodermal and neuroectodermal tissues. Has-Hox2, -Hox3, -Hox4, and-Hox5 appear to be expressed in a colinear manner in the ganglia and connectives in the twisted nervous system. This pattern is not evident in older larvae. Has-Hox1 and-Hox4 are expressed in the margin of the mantle in the posttorsional veliger, suggesting that Hox genes play a role in gastropod shell formation.
Resumo:
Wolbachia are intracellular microorganisms that form maternally-inherited infections within numerous arthropod species. These bacteria have drawn much attention, due in part to the reproductive alterations that they induce in their hosts including cytoplasmic incompatibility (CI), feminization and parthenogenesis. Although Wolbachia's presence within insect reproductive tissues has been well described, relatively few studies have examined the extent to which Wolbachia infects other tissues. We have examined Wolbachia tissue tropism in a number of representative insect hosts by western blot, dot blot hybridization and diagnostic PCR. Results from these studies indicate that Wolbachia are much more widely distributed in host tissues than previously appreciated. Furthermore, the distribution of Wolbachia in somatic tissues varied between different Wolbachia/host associations. Some associations showed Wolbachia disseminated throughout most tissues while others appeared to be much more restricted, being predominantly limited to the reproductive tissues. We discuss the relevance of these infection patterns to the evolution of Wolbachia/host symbioses and to potential applied uses of Wolbachia.
Resumo:
To date, the laboratory has cloned seven unique human sulfotransferases; five aryl sulfotransferases (HAST1, HAST2, HAST3, HAST4 and HAST4v), an estrogen sulfotransferase and a dehydroepiandrosterone sulfotransferase. The cellular distribution of human aryl sulfotransferases in human hepatic and extrahepatic tissues has been determined using the techniques of hybridization histochemistry and immunohistochemistry. Human aryl sulfotransferase expression was detected in liver, epithelial cells of the gastrointestinal mucosal layer, epithelial cells lining bronchioles and in mammary duct epithelial cells. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Four different promoters (35S and enhanced 35S of the cauliflower mosaic virus, polyubiquitin of maize and actin1 of rice) were compared in a transient assay using maize leaves and particle bombardment. A gene encoding the jellyfish green fluorescent protein (GFP) driven by the 358 promoter was used as an internal standard to monitor the effectiveness of each bombardment. Normalisation of the transient expression assay using the GFP reference significantly reduced the variability between separate bombardments and allowed for a rapid and accurate evaluation of different promoters in microprojectile-bombarded leaves.
Resumo:
The targeting of topically applied drug molecules into tissues below a site of application requires an understanding of the complex interrelationships between the drug, its formulation, the barrier properties of the skin, and the physiological processes occurring below the skin that are responsible for drug clearance from the site, tissue, and/or systemic distribution and eventual elimination. There is still a certain amount of controversy over the ability of topically applied drugs to penetrate into deeper tissues by diffusion or whether this occurs by redistribution in the systemic circulation. The major focus of our work in this area has been in determining how changes in drug structure and physicochemical properties, such as protein binding and lipophilicity, affect drug clearance into the local dermal microcirculation and lymphatics, as well as subsequent distribution into deeper tissues below an application site. The present study outlines our recent thinking on the drug molecule optimal physical attributes, in terms of plasma and tissue partitioning behaviour, that offer the greatest potential for deep tissue targeting. Drug Dev. Res. 46:309-315, 1999. (C) 1999 Wiley-Liss, Inc.
Resumo:
First-instar larvae of the monarch butterfly, Danaus plexippus, a milkweed specialist, generally grew faster and survived better on leaves when latex flow was reduced by partial severance of the leaf petiole. The outcome depended on milkweed species and was related to the amount of latex produced. The outcome also may be related to the amount of cardenolide produced by the plants as a potential chemical defense against herbivory. Growth was more rapid, but survival was similar on partially severed compared with intact leaves of the high-latex/low-cardenolide milkweed, Asclepias syriaca, whereas both growth and survival were unaffected on the low-latex/low-cardenolide milkweed A. incarnata. On the low-latex/low-cardenolide milkweed A. tuberosa, both growth and survival of larvae were only marginally affected. These results contrast sharply to previous results with the milkweed, A. humistrata, in Florida, which has both high latex and high cardenolide. Larval growth and survival on A. humistrata were both increased by partially severing leaf petioles. Larval growth rates among all four milkweed species on leaves with partially severed petioles were identical, suggesting that latex and possibly the included cardenolides are important in first-instar monarch larval growth, development, and survivorship.
Resumo:
Human acetyl coenzyme A-dependent N-acetyltransferase (EC 2.3.1.5) (NAT) catalyzes the biotransformation of a number of arylamine and hydrazine compounds. NAT isozymes are encoded at 2 loci; one encodes NAT1, formerly known as the monomorphic form of the enzyme, while the other encodes the polymorphic NAT2, which is responsible for individual differences in the ability to acetylate certain compounds. Human epidemiological studies have suggested an association between the acetylator phenotype and particular cancers such as those of the bladder and colon. In the present study, NAT1- and NAT2-specific riboprobes were used in hybridization histochemistry studies to localize NAT1 and NAT2 mRNA sequences in formalin-fixed, paraffin-embedded human tissue sections. Expression of both NAT1 and NAT2 mRNA was observed in liver, gastrointestinal tract tissues (esophagus, stomach, small intestine, and colon), ureter, bladder, and lung. In extrahepatic tissues, NAT1 and NAT2 mRNA expression was localized to intestinal epithelial cells, urothelial cells, and the epithelial cells of the respiratory bronchioles. The observed heterogeneity of NAT1 and NAT2 mRNA expression between human tissue types may be of significance in assessing their contribution to known organ-specific toxicities of various arylamine drugs and carcinogens.
Resumo:
1. Classical L-type voltage-operated calcium channel (VOCC) antagonists dilate blood vessels, depress myocardial contractility and slow cardiac conduction. 2. We compared four L-type VOCC antagonists and a novel tetralol derivative, mibefradil, reportedly 10-fold more selective for T- (transient) over L-type VOCC in two in vitro assays of human tissue, namely isolated small arteries from the aortic vasa vasorum in a myograph and right atrial trabeculae muscle under isometric force conditions. 3. In arteries contracted with K+ (62 mmol/L), the relaxation pIC(50) values for the VOCC antagonists felodipine, nifedipine, amlodipine, verapamil and mibefradil were 8.30, 7.78, 6.64, 6.26 and 6.22, respectively. In atrial trabeculae, the pIC(50) values to inhibit the inotropic response to a submaximal concentration of isoprenaline (6 nmol/L) for felodipine, nifedipine, verapamil, amlodipine and mibefradil were 7.21, 6.95, 6.91, 5.94 and 4.61, respectively. 4. Taking the anti-log (pIC(50) vessel - pIC(50) atrium) the vascular relaxation to cardiac depression potency ratios for mibefradil, felodipine, nifedipine, amlodipine and verapamil were 41, 12, 7, 5 and 0.22, respectively. 5. We conclude that, in human tissue assays, perhaps T- over L-type VOCC selectivity confers the most favourable vascular selectivity on mibefradil. Alternatively, splice variants of L-type VOCC in the vasculature (CaV1.2b) may be more sensitive to mibefradil than the splice variants in the heart (CaV1.2a).
Resumo:
The depletion of zeta-cypermethrin residues in bovine tissues and milk was studied. Beef cattle were treated three times at 3-week intervals with 1 ml 10 kg(-1) body weight of a 25 g litre(-1) or 50 g litre(-1) pour-on formulation (2.5 and 5.0 mg zeta-cypermethrin kg(-1) body weight) or 100 mg kg(-1) spray to simulate a likely worst-case treatment regime. Friesian and Jersey dairy cows were treated once with 2.5 mg zeta-cypermethrin kg(-1) in a pour-on formulation. Muscle, liver and kidney residue concentrations were generally less than the limit of detection (LOD = 0.01 mg kg(-1)). Residues in renal-fat and back-fat samples from animals treated with 2.5 mg kg(-1) all exceeded the limit of quantitation (LOQ = 0.05 mg kg(-1)), peaking at 10 days after treatment. Only two of five kidney fat samples were above the LOQ after 34 days, but none of the back-fat samples exceeded the LOQ at 28 days after treatment. Following spray treatments, fat residues were detectable in some animals but were below the LOQ at all sampling intervals. Zeta-cypermethrin was quantifiable (LOQ = 0.01 mg kg(-1)) in only one whole-milk sample from the Friesian cows (0.015 mg kg(-1), 2 days after treatment). In whole milk from Jersey cows, the mean concentration of zeta-cypermethrin peaked 1 day after treatment, at 0.015 mg kg(-1), and the highest individual sample concentration was 0.025 mg kg(-1) at 3 days after treatment. Residues in milk were not quantifiable beginning 4 days after treatment. The mean concentrations of zeta-cypermethrin in milk fat from Friesian and Jersey cows peaked two days after treatment at 0.197 mg kg(-1) and 0.377 mg kg(-1), respectively, and the highest individual sample concentrations were 2 days after treatment at 0.47 mg kg(-1) and 0.98 mg kg(-1), respectively. (C) 2001 Society of Chemical Industry.
Resumo:
Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.