96 resultados para Landscape Ecological Classification
em University of Queensland eSpace - Australia
Resumo:
Accurate habitat mapping is critical to landscape ecological studies such as required for developing and testing Montreal Process indicator 1.1e, fragmentation of forest types. This task poses a major challenge to remote sensing, especially in mixedspecies, variable-age forests such as dry eucalypt forests of subtropical eastern Australia. In this paper, we apply an innovative approach that uses a small section of one-metre resolution airborne data to calibrate a moderate spatial resolution model (30 m resolution; scale 1:50 000) based on Landsat Thematic Mapper data to estimate canopy structural properties in St Marys State Forest, near Maryborough, south-eastern Queensland. The approach applies an image-processing model that assumes each image pixel is significantly larger than individual tree crowns and gaps to estimate crown-cover percentage, stem density and mean crown diameter. These parameters were classified into three discrete habitat classes to match the ecology of four exudivorous arboreal species (yellowbellied glider Petaurus australis, sugar glider P. breviceps, squirrel glider P. norfolcensis , and feathertail glider Acrobates pygmaeus), and one folivorous arboreal marsupial, the greater glider Petauroides volans. These species were targeted due to the known ecological preference for old trees with hollows, and differences in their home range requirements. The overall mapping accuracy, visually assessed against transects (n = 93) interpreted from a digital orthophoto and validated in the field, was 79% (KHAT statistic = 0.72). The KHAT statistic serves as an indicator of the extent that the percentage correct values of the error matrix are due to ‘true’ agreement verses ‘chance’ agreement. This means that we are able to reliably report on the effect of habitat loss on target species, especially those with a large home range size (e.g. yellow-bellied glider). However, the classified habitat map failed to accurately capture the spatial patterning (e.g. patch size and shape) of stands with a trace or sub-dominance of senescent trees. This outcome makes the reporting of the effects of habitat fragmentation more problematic, especially for species with a small home range size (e.g. feathertail glider). With further model refinement and validation, however, this moderateresolution approach offers an important, cost eff e c t i v e advancement in mapping the age of dry eucalypt forests in the region.
Resumo:
Predicting the various responses of different species to changes in landscape structure is a formidable challenge to landscape ecology. Based on expert knowledge and landscape ecological theory, we develop five competing a priori models for predicting the presence/absence of the Koala (Phascolarctos cinereus) in Noosa Shire, south-east Queensland (Australia). A priori predictions were nested within three levels of ecological organization: in situ (site level) habitat (< 1 ha), patch level (100 ha) and landscape level (100-1000 ha). To test the models, Koala surveys and habitat surveys (n = 245) were conducted across the habitat mosaic. After taking into account tree species preferences, the patch and landscape context, and the neighbourhood effect of adjacent present sites, we applied logistic regression and hierarchical partitioning analyses to rank the alternative models and the explanatory variables. The strongest support was for a multilevel model, with Koala presence best predicted by the proportion of the landscape occupied by high quality habitat, the neighbourhood effect, the mean nearest neighbour distance between forest patches, the density of forest patches and the density of sealed roads. When tested against independent data (n = 105) using a receiver operator characteristic curve, the multilevel model performed moderately well. The study is consistent with recent assertions that habitat loss is the major driver of population decline, however, landscape configuration and roads have an important effect that needs to be incorporated into Koala conservation strategies.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Ecological regions are increasingly used as a spatial unit for planning and environmental management. It is important to define these regions in a scientifically defensible way to justify any decisions made on the basis that they are representative of broad environmental assets. The paper describes a methodology and tool to identify cohesive bioregions. The methodology applies an elicitation process to obtain geographical descriptions for bioregions, each of these is transformed into a Normal density estimate on environmental variables within that region. This prior information is balanced with data classification of environmental datasets using a Bayesian statistical modelling approach to objectively map ecological regions. The method is called model-based clustering as it fits a Normal mixture model to the clusters associated with regions, and it addresses issues of uncertainty in environmental datasets due to overlapping clusters.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).
Resumo:
A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.
Resumo:
Areas of the landscape that are priorities for conservation should be those that are both vulnerable to threatening processes and that if lost or degraded, will result in conservation targets being compromised. While much attention is directed towards understanding the patterns of biodiversity, much less is given to determining the areas of the landscape most vulnerable to threats. We assessed the relative vulnerability of remaining areas of native forest to conversion to plantations in the ecologically significant temperate rainforest region of south central Chile. The area of the study region is 4.2 million ha and the extent of plantations is approximately 200000 ha. First, the spatial distribution of native forest conversion to plantations was determined. The variables related to the spatial distribution of this threatening process were identified through the development of a classification tree and the generation of a multivariate. spatially explicit, statistical model. The model of native forest conversion explained 43% of the deviance and the discrimination ability of the model was high. Predictions were made of where native forest conversion is likely to occur in the future. Due to patterns of climate, topography, soils and proximity to infrastructure and towns, remaining forest areas differ in their relative risk of being converted to plantations. Another factor that may increase the vulnerability of remaining native forest in a subset of the study region is the proposed construction of a highway. We found that 90% of the area of existing plantations within this region is within 2.5 km of roads. When the predictions of native forest conversion were recalculated accounting for the construction of this highway, it was found that: approximately 27000 ha of native forest had an increased probability of conversion. The areas of native forest identified to be vulnerable to conversion are outside of the existing reserve network. (C) 2004 Elsevier Ltd. All tights reserved.
Resumo:
Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (H-E) for isozymes (H-E = 0.195) and cpDNA markers (H-E = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta(n) = 0.043, cpDNA Theta(c) = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.
Resumo:
An expanding human population and associated demands for goods and services continues to exert an increasing pressure on ecological systems. Although the rate of expansion of agricultural lands has slowed since 1960, rapid deforestation still occurs in many tropical countries, including Colombia. However, the location and extent of deforestation and associated ecological impacts within tropical countries is often not well known. The primary aim of this study was to obtain an understanding of the spatial patterns of forest conversion for agricultural land uses in Colombia. We modeled native forest conversion in Colombia at regional and national-levels using logistic regression and classification trees. We investigated the impact of ignoring the regional variability of model parameters, and identified biophysical and socioeconomic factors that best explain the current spatial pattern and inter-regional variation in forest cover. We validated our predictions for the Amazon region using MODIS satellite imagery. The regional-level classification tree that accounted for regional heterogeneity had the greatest discrimination ability. Factors related to accessibility (distance to roads and towns) were related to the presence of forest cover, although this relationship varied regionally. In order to identify areas with a high risk of deforestation, we used predictions from the best model, refined by areas with rural population growth rates of > 2%. We ranked forest ecosystem types in terms of levels of threat of conversion. Our results provide useful inputs to planning for biodiversity conservation in Colombia, by identifying areas and ecosystem types that are vulnerable to deforestation. Several of the predicted deforestation hotspots coincide with areas that are outstanding in terms of biodiversity value.
Resumo:
40Ar/39Ar laser incremental heating analyses of individual grains of supergene jarosite, alunite, and cryptomelane from weathering profiles in the Dugald River area, Queensland, Australia, show a strong positive correlation between a sample’s age and its elevation. We analyzed 125 grains extracted from 35 hand specimens collected from weathering profiles at 11 sites located at 3 distinct elevations. The highest elevation profile hosts the oldest supergene minerals, whereas progressively younger samples occur at lower positions in the landscape. The highest elevation sampling sites (three sites), located on top of an elongated mesa (255 to 275 m elevation), yield ages in the 16 to 12 Ma range. Samples from an intermediate elevation site (225 to 230 m elevation) yield ages in the 6 to 4 Ma range. Samples collected at the lowest elevation sites (200 to 220 m elevation) yield ages in the 2.2 to 0.8 Ma interval. Grains of supergene alunite, jarosite, and cryptomelane analyzed from individual single hand specimens yield reproducible results, confirming the suitability of these minerals to 40Ar/39Ar geochronology. Multiple samples collected from the same site also yield reproducible results, indicating that the ages measured are true precipitation ages for the samples analyzed. Different sites, up to 3 km apart, sampled from weathering profiles at the same elevation again yield reproducible results. The consistency of results confirms that 40Ar/39Ar geochronology of supergene jarosite, alunite, and cryptomelane yields ages of formation of weathering profiles, providing a reliable numerical basis for differentiating and correlating these profiles. The age versus elevation relationship obtained suggest that the stepped landscapes in the Dugald River area record a progressive downward migration of a relatively flat weathering front. The steps in the landscape result from differential erosion of previously weathered bedrock displaying different susceptibility to weathering and contrasting resistance to erosion. Combined, the age versus elevation relationships measured yield a weathering rate of 3.8 m. Myr−1 (for the past 15 Ma) if a descending subhorizontal weathering front is assumed. The results also permit the calculation of the erosion rate of the more easily weathered and eroded lithologies, assuming an initially flat landscape as proposed in models of episodic landscape development. The average erosion rate for the past 15 Ma is 3.3 m. Myr−1, consistent with erosion rates obtained by cosmogenic isotope studies in the region.
Resumo:
Developing a unified classification system to replace four of the systems currently used in disability athletics (i.e., track and field) has been widely advocated. The diverse impairments to be included in a unified system require severed assessment methods, results of which cannot be meaningfully compared. Therefore, the taxonomic basis of current classification systems is invalid in a unified system. Biomechanical analysis establishes that force, a vector described in terms of magnitude and direction, is a key determinant of success in all athletic disciplines. It is posited that all impairments to be included in a unified system may be classified as either force magnitude impairments (FMI) or force control impairments (FCI). This framework would provide a valid taxonomic basis for a unified system, creating the opportunity to decrease the number of classes and enhance the viability of disability athletics.