5 resultados para Landfill

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leacbate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to conduct a number of controlled digestions to obtain easily comparable cellulose solubilisation rates and to compare these rates to those found in the literature to see which operational differences were significant in affecting cellulose degradation during anaerobic digestion. The results suggested that differences in volumetric cellulose solubilisation rates were not indicative of the true performance of cellulose digestion systems. When cellulose solubilisation rates were normalised by the mass of cellulose in the reactor at each time step, the comparison of the rates became more meaningful. Cellulose solubilisation was surface area limited. Therefore, changes in the loading rate of cellulose to the reactor altered the volumetric solubilisation rate without changing the mass normalised rate. Comparison of mass normalised solubilisation rates from this study and the literature demonstrated that differences in reactor configuration and operational conditions did not significantly impact on the solubilisation rate whereas the difference in composition of the microbial communities showed a marked effect. This work highlights the importance of using appropriately normalised data when making comparisons between systems with differing operational conditions. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To elucidate whether a dominant uncultured clostridial (Clostridium thermocellum-like) species in an environmental sample (landfill leachate), possesses an autoinducing peptide (AIP) quorum-sensing (QS) gene, although it may not be functional. Methods and Results: A modified AIP accessory gene regulator (agr)C PCR protocol was performed on extracted DNA from a landfill leachate sample (also characterized by 16S rRNA gene cloning) and the PCR products were cloned, sequenced and phylogenetically analysed. It appeared that two agrC gene phylotypes existed, most closely related to the C. thermocellum agrC gene, differing by only 1 bp. Conclusions: It is possible to specifically identify and characterize the agrC AIP QS gene from uncultured Firmicutes (C. thermocellum-like) bacteria derived from environmental (landfill leachate) sample. Significance and Impact of the Study: This is the first successful attempt at identifying AIP QS genes from a cellulolytic environment (landfill). The agrC gene was identified as being most closely related to the C. thermocellum agrC gene, the same bacterium identified as being dominant, according to 16S rRNA gene cloning and subsequently fluorescence in situ hybridization analyses, in the same biomass.