82 resultados para Land degradation
em University of Queensland eSpace - Australia
Resumo:
Land degradation in the Philippine uplands is severe and widespread. Most upland areas are steep, and intense rainfall on soils disturbed by intensive agriculture can produce high rates of soil loss. This has serious implications for the economic welfare of a growing upland population with few feasible livelihood alternatives. Hedgerow intercropping can greatly reduce soil loss from annual cropping systems and has been considered an appropriate technology for soil conservation research and extension in the Philippine uplands. However; adoption of hedgerow intercropping has been sporadic and transient, rarely continuing once external support has been withdrawn. The objective of this paper is to investigate the economic incentives for farmers in the Philippine uplands to adopt hedgerow intercropping relative to traditional open-field maize farming. Cost-benefit analysis is used to compare the economic viability of hedgerow intercropping, as it has been promoted to upland farmers, with the viability of traditional methods of open-field farming. The APSIM and SCUAF models were used to predict the effect of soil erosion on maize yields from open-field farming and hedgerow intercropping. The results indicate that there have been strong economic incentives for farmers with limited planning horizons to reject hedgerow intercropping because the benefits of sustained yields are not realized rapidly enough to compensate for high establishment costs. Alternative forms of hedgerow intercropping such as natural vegetation and grass strips reduce establishment and maintenance costs and are therefore more economically attractive to farmers than hedgerow intercropping with shrub legumes. The long-term economic viability of hedgerow intercropping depends on the economic setting and the potential for hedgerow intercropping to sustain maize production relative to traditional open-field farming. (C) 1998 Academic Press.
Resumo:
The phenomenon of agricultural land degradation in the Philippine uplands has been regarded by scientists and policy-makers as a major environmental and rural development problem. Numerous conservation farming projects have been implemented in the past two decades to address this problem, apparently with little success. Most of these projects have espoused the currently fashionable principles of community-based sustainable development. This paper examines case histories of three completed upland conservation projects. The aim is to compare the rhetoric of project documents and evaluations with the reality of on-going land management practices as seen from the perspective of the land managers themselves. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Concerns of reduced productivity and land degradation in the Mitchell grasslands of central western Queensland were addressed through a range monitoring program to interpret condition and trend. Botanical and eclaphic parameters were recorded along piosphere and grazing gradients, and across fenceline impact areas, to maximise changes resulting from grazing. The Degradation Gradient Method was used in conjunction with State and Transition Models to develop models of rangeland dynamics and condition. States were found to be ordered along a degradation gradient, indicator species developed according to rainfall trends and transitions determined from field data and available literature. Astrebla spp. abundance declined with declining range condition and increasing grazing pressure, while annual grasses and forbs increased in dominance under poor range condition. Soil erosion increased and litter decreased with decreasing range condition. An approach to quantitatively define states within a variable rainfall environment based upon a time-series ordination analysis is described. The derived model could provide the interpretive framework necessary to integrate on-ground monitoring, remote sensing and geographic information systems to trace states and transitions at the paddock scale. However, further work is needed to determine the full catalogue of states and transitions and to refine the model for application at the paddock scale.
Resumo:
Eucalyptus savannas on low nutrient soils are being extensively cleared in Queensland. In this paper we provide background information relevant to understanding nutrient (particularly nitrogen) dynamics in sub/tropical savanna, and review the available evidence relevant to understanding the potential impact of clearing Eucalyptus savanna on nutrient relations. The limited evidence presently available can be used to argue for the extreme positions that: (i) woody vegetation competes with grasses Cor resources. and tree/shrub clearing improves pasture production, (ii) woody vegetation benefits pasture production. At present, the lack of fundamental knowledge about Australian savanna nutrient relations makes accurate predictions about medium- and long-term effects of clearing on nutrient relations in low nutrient savannas difficult. The future of cleared savannas will differ if herbaceous species maintain all functions that woody vegetation has previously held, or if woody species have functions distinct from those of herbaceous vegetation. Research suggests that savanna soils are susceptible to nitrate leaching, and that trees improve the nutrient status of savanna soils in some situations. The nitrogen capital of cleared savanna is at risk if mobile ions are not captured efficiently by the vegetation. and nitrogen input via N-2 fixation from vegetation and microbiotic crusts is reduced. In order to predict clearing effects on savanna nutrient relations, research should be directed to answering (i) how open or closed nutrient cycles are in natural and cleared savanna, (ii) which functions are performed by savanna constituents such as woody and herbaceous vegetation, native and exotic plant species. termites, and microbiotic 7 crusts in relation to nutrient cycles. In the absence of detailed knowledge about savanna functioning, clearing carries the risk of promoting continuous nutrient depiction.
Resumo:
Aluminium (At) tolerance in plants may be conferred by reduced binding of Al in the cell wall through low root cation exchange capacity (CEC) or by organic acid exudation. Root CEC is related to the degree of esterification (DE) of pectin in the cell wall, and pectin hydrolysis plays a role in cell expansion. Therefore, it was hypothesised that Al-tolerant plants with a low root CEC maintain pectin hydrolysis in the presence of Al, allowing cell expansion to continue. Irrespective of the DE, binding of Al to pectin reduced the enzymatic hydrolysis of Al-pectin gels by polygalacturonase (E.C. 3.2.1.15). Pectin gels with calcium (Ca) were slightly hydrolysed by polygalacturonase. It was concluded, therefore, that Al tolerance conferred by low root CEC is not mediated by the ability to maintain pectin hydrolysis. Citrate and malate, but not acetate, effectively dissolved Al-pectate gel and led to hydrolysis of the dissolved pectin by polygalacturonase. The organic acids did not dissolve Ca-pectate, nor did they increase pectin hydrolysis by polygalacturonase. It was concluded that exudation of some organic acids can remove Al bound to pectin and this could alleviate toxicity, constituting a tolerance mechanism. (C) 2003 Editions scientitiques et medicales Elsevier SAS. All rights reserved.
Resumo:
An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leacbate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.
Resumo:
Anaerobic digestion of lignocellulosic material is carried out effectively in many natural microbial ecosystems including the rumen. A rumen-enhanced anaerobic sequencing batch reactor was used to investigate cellulose degradation to give analysis of overall process stoichiometry and rates of hydrolysis. The reactor achieved VFA production rates of 207-236 mg COD/L/h at a loading rate of 10 g/L/d. Overloading of the reactor resulted in elevated production of propionic acid, and on occasion, the presence of succinic acid. With improvements in mixing and solids wasting, the anaerobic sequencing batch reactor system could enable full-scale application of the process for treatment of cellulosic waste material.
Resumo:
The area of private land suitable and available for growing hoop pine (Araucaria cunninghamii) on the Atherton Tablelands in North Queensland was modelled using a geographic information system (GIS). In Atherton, Eacham and Herberton shires, approximately 64,700 ha of privately owned land were identified as having a mean annual rainfall and soil type similar to Forestry Plantations Queensland (FPQ) hoop pine growth plots with an approximate growth rate of 20 m3 per annum. Land with slope of over 25° and land covered with native vegetation were excluded in the estimation. If land which is currently used for high-value agriculture is also excluded, the net area of land potentially suitable and available for expansion of hoop pine plantations is approximately 22,900 ha. Expert silvicultural advice emphasized the role of site preparation and weed control in affecting the long-term growth rate of hoop pine. Hence, sites with less than optimal fertility and rainfall may be considered as being potentially suitable for growing hoop pine at a lower growth rate. The datasets had been prepared at various scales and differing precision for their description of land attributes. Therefore, the results of this investigation have limited applicability for planning at the individual farm level but are useful at the regional level to target areas for plantation expansion.
MHC class II expression is regulated in dendritic cells independently of invariant chain degradation
Resumo:
We have investigated the mechanisms that control MHC class II (MHC II) expression in immature and activated dendritic cells (DC) grown from spleen and bone marrow precursors. Degradation of the MHC II chaperone invariant chain (li), acquisition of peptide cargo by MHC II, and delivery of MHC II-peptide complexes to the cell surface proceeded similarly in both immature and activated DC. However, immature DC reendocytosed and then degraded the MHC II-peptide complexes much faster than the activated DC. MHC II expression in DC is therefore not controlled by the activity of the protease(s) that degrade Ii, but by the rate of endocytosis of peptide-loaded MHC II. Late after activation, DC downregulated MHC II synthesis both in vitro and in vivo.