4 resultados para Laminin-511

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta2-Laminin is important for the formation of neuromuscular junctions in vertebrates. Previously, we have inactivated the gene that encodes for beta2-laminin in mice and observed predominantly prejunctional structural defects. In this study, we have used both intra- and extracellular recording methods to investigate evoked neurotransmission in beta2-laminin-deficient mice, from postnatal day 8 (P8) through to day 18(P18). Our results confirmed that there was a decrease in the frequency of spontaneous release, but no change in the postjunctional response to such release. Analysis of evoked neurotransmission showed an increase in the frequency of stimuli that failed to elicit an evoked postjunctional response in the mutants compared to litter mate controls, resulting in a 50% reduction in mean quantal content at mutant terminals. Compared to littermate controls, beta2-laminin-deficient terminals showed greater synaptic depression when subjected to high frequency stimulation. Furthermore, the paired pulse ratio of the first two stimuli was significantly lower in beta2-laminin mutant terminals. Statistical analysis of the binomial parameters of release showed that the decrease in quantal content was due to a decrease in the number of release sites without any significant change in the average probability of release. This suggestion was supported by the observation of fewer synaptic vesicle protein 2 (SV2)-positive varicosities in beta2-laminin-deficient terminals and by ultrastructural observations showing smaller terminal profiles and increased Schwann cell invasion in beta2-laminin mutants; the differences between beta2-laminin mutants and wild-type mice were the same at both P8 and P18. From these results we conclude that beta2-laminin plays a role in the early structural development of the neuromuscular junction. We also suggest that transmitter release activity may act as a deterrent to Schwarm cell invasion in the absence of beta2-laminin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reasons for performing study: The key lesion of laminitis is separation at the hoof lamellar dermal-epidermal interface. For this to happen the structural and adhesion proteins of the basement membrane zone must be altered. Which proteins and how damage to them leads to the lamellar separation of laminitis is unknown. Objectives: To investigate lamellar hemidesmosome and cytoskeleton damage and basement membrane dysadhesion using light microscopy (LM) and immunofluorescence microscopy (IFM). Methods: Cryostat sections of lamellar tissues from 2 control and 6 Standardbred horses with oligofructose induced laminitis were studied using LM and IFM. Plectin, integrin alpha(6) and BP230 antibody was used to label hemidesmosome intracellular plaque proteins and anti-BP180 and anti-laminin 5 (L5) was used to label anchoring filament (AF) proteins. Cytoskeleton intermediate filaments were labelled using anti-cytokeratin 14. The primary antibodies of selected sections were double labelled to show protein co-localisation. Results: Laminitis caused reduction of transmembrane integrin alpha(6), the AF proteins BP180 and L5,and failure of co-localisation of BP180 and L5. Proteins of the inner hemidesmosomal plaque, plectin and BP230, were unaffected. Conclusions: Loss of co-localisation of L5 and BP180 suggests that, during the acute phase of laminitis, L5 is cleaved and therefore, the AFs connecting the epidermis to the dermis, fail. Without a full complement of AFs separation at the lamellar dermo-epidermal junction occurs. Potential relevance: Suppressing or inhibiting metalloproteinase activity may prevent L5 cleavage and therefore the lamellar dermo-epidermal separation of laminitis.