6 resultados para Lambros, Tino

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunohistochemical analysis of E-cadherin has changed the way lobular neoplasia is perceived. It has helped to classify difficult cases of carcinoma in situ with indeterminate features and led to the identification of new variants of lobular carcinoma. Pleomorphic lobular carcinoma (PLC) and pleomorphic lobular carcinoma in situ (PLCIS), recently described variants of invasive and in situ classic lobular carcinoma, are reported to be associated with more aggressive clinical behaviour. Although PLC/PLCIS show morphological features of classic lobular neoplasia and lack E-cadherin expression, it is still unclear whether these lesions evolve through the same genetic pathway as lobular carcinomas or are high-grade ductal neoplasms that have lost E-cadherin. Here we have analysed a case of extensive PLCIS and invasive PLC associated with areas of E-cadherin-negative carcinoma in situ with indeterminate features, using immunohistochemistry, chromogenic in situ hybridization, high-resolution comparative genomic hybridization (CGH) and array-based CGH. We observed that all lesions lacked E-cadherin and beta-catenin and showed gain of 1q and loss of 16q, features that are typical of lobular carcinomas but are not seen in high-grade ductal lesions. In addition, amplifications of c-myc and HER2 were detected in the pleomorphic components, which may account for the high-grade features in this case and the reported aggressive clinical behaviour of these lesions. Taken together, these data suggest that at least some PLCs may evolve from the same precursor or through the same genetic pathway as classic lobular carcinomas. Copyright (c) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metaplastic breast carcinomas are reported to harbour epidermal growth factor receptor (EGFR) overexpression in up to 80% of the cases, but EGFR gene amplification is the underlying genetic mechanism in around one-third of these. In this study, EGFR gene amplification as defined by chromogenic in situ hybridization and protein overexpression was examined in a cohort of 47 metaplastic breast carcinomas. Furthermore, the presence of activating EGFR mutations in exons 18, 19, 20, and 21 was investigated. Thirty-two cases showed EGFR overexpression and of these, 11 (34%) harboured EGFR gene amplification. In addition, EGFR amplification showed a statistically significant association with EGFR overexpression (p < 0.0094) and was restricted to carcinomas with homologous metaplasia. Ten cases, five with and five without EGFR amplification, were subjected to microarray-based CGH, which demonstrated that EGFR copy number gain may occur by amplification of a discrete genomic region or by gains of the short arm of chromosome 7 with a breakpoint near the EGFR gene locus, the minimal region of amplification mapping to EGFR, LANCL2, and SECOG. No activating EGFR mutations were identified, suggesting that this is unlikely to be a common alternative underlying genetic mechanism for EGFR expression in metaplastic breast carcinomas. Given that metaplastic breast carcinomas are resistant to conventional chemotherapy or hormone therapy regimens and that tumours with EGFR amplification are reported to be sensitive to EGFR tyrosine kinase inhibitors, these findings indicate that further studies are warranted to explore EGFR tyrosine kinase inhibitors as potential therapeutic agents for metaplastic breast carcinomas harbouring amplification of 7p11.2. Copyright (c) 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromogenic (CISH) and fluorescent ( FISH) in situ hybridization have emerged as reliable techniques to identify amplifications and chromosomal translocations. CISH provides a spatial distribution of gene copy number changes in tumour tissue and allows a direct correlation between copy number changes and the morphological features of neoplastic cells. However, the limited number of commercially available gene probes has hindered the use of this technique. We have devised a protocol to generate probes for CISH that can be applied to formalin-fixed, paraffin-embedded tissue sections (FFPETS). Bacterial artificial chromosomes ( BACs) containing fragments of human DNA which map to specific genomic regions of interest are amplified with phi 29 polymerase and random primer labelled with biotin. The genomic location of these can be readily confirmed by BAC end pair sequencing and FISH mapping on normal lymphocyte metaphase spreads. To demonstrate the reliability of the probes generated with this protocol, four strategies were employed: (i) probes mapping to cyclin D1 (CCND1) were generated and their performance was compared with that of a commercially available probe for the same gene in a series of 10 FFPETS of breast cancer samples of which five harboured CCND1 amplification; (ii) probes targeting cyclin-dependent kinase 4 were used to validate an amplification identified by microarray-based comparative genomic hybridization (aCGH) in a pleomorphic adenoma; (iii) probes targeting fibroblast growth factor receptor 1 and CCND1 were used to validate amplifications mapping to these regions, as defined by aCGH, in an invasive lobular breast carcinoma with FISH and CISH; and (iv) gene-specific probes for ETV6 and NTRK3 were used to demonstrate the presence of t(12; 15)(p12; q25) translocation in a case of breast secretory carcinoma with dual colour FISH. In summary, this protocol enables the generation of probes mapping to any gene of interest that can be applied to FFPETS, allowing correlation of morphological features with gene copy number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Classic lobular carcinomas (CLC) account for 10% to 15% of all breast cancers. At the genetic level, CLCs show recurrent physical loss of chromosome16q coupled with the lack of E-cadherin (CDH1 gene) expression. However, little is known about the putative therapeutic targets for these tumors. The aim of this study was to characterize CLCs at the molecular genetic level and identify putative therapeutic targets. Experimental Design: We subjected 13 cases of CLC to a comprehensive molecular analysis including immunohistochemistry for E-cadherin, estrogen and progesterone receptors, HER2/ neu and p53; high-resolution comparative genomic hybridization (HR-CGH); microarray-based CGH (aCGH); and fluorescent and chromogenic in situ hybridization for CCND1 and FGFR1. Results: All cases lacked the expression of E-cadherin, p53, and HER2, and all but one case was positive for estrogen receptors. HR-CGH revealed recurrent gains on 1q and losses on 16q (both, 85%). aCGH showed a good agreement with but higher resolution and sensitivity than HR-CGH. Recurrent, high level gains at 11q13 (CCND1) and 8p12-p11.2 were identified in seven and six cases, respectively, and were validated with in situ hybridization. Examination of aCGH and the gene expression profile data of the cell lines, MDA-MB-134 and ZR-75-1, which harbor distinct gains of 8p12-p11.2, identified FGFR1 as a putative amplicon driver of 8p12-p11.2 amplification in MDA-MB-134. Inhibition of FGFR1 expression using small interfering RNA or a small-molecule chemical inhibitor showed that FGFR1 signaling contributes to the survival of MDA-MB-134 cells. Conclusions: Our findings suggest that receptor FGFR1 inhibitors may be useful as therapeutics in a subset of CLCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In empirical studies of Evolutionary Algorithms, it is usually desirable to evaluate and compare algorithms using as many different parameter settings and test problems as possible, in border to have a clear and detailed picture of their performance. Unfortunately, the total number of experiments required may be very large, which often makes such research work computationally prohibitive. In this paper, the application of a statistical method called racing is proposed as a general-purpose tool to reduce the computational requirements of large-scale experimental studies in evolutionary algorithms. Experimental results are presented that show that racing typically requires only a small fraction of the cost of an exhaustive experimental study.