4 resultados para Laboratory test
em University of Queensland eSpace - Australia
Resumo:
Cylpebs are slightly tapered cylindrical grinding media with a ratio of length to diameter of unity. The manufactures have made conflicting claims regarding the milling performance of Cylpebs in comparison with balls. One major point of interest is which one grinds finer at the same operating conditions. The difficulty in comparison is due to the shape difference. The two grinding media have different surface area, bulk density and contact mechanisms in grinding action. Comparative tests were conducted using the two types of grinding media in a laboratory Bond ball mill at various conditions of equality such as media mass, size distribution, surface area and input specific energy. The laboratory results indicate that at the same specific energy input level the Cylpebs produce a product with slightly less oversize due to their greater surface area, but essentially the same sizing at the fine end as that produced with the balls. The reason may be that the advantage of greater surface area is balanced by the line contact and area contact grinding actions with the Cylpebs. A new ball mill scale-up procedure [Man, Y.T., 2001. Model-based procedure for scale-up of wet, overflow ball mills, Part 1: outline of the methodology. Minerals Engineering 14 (10), 1237-1246] was employed to predict grinding performance of an industrial mill from the laboratory test results. The predicted full scale operation was compared with the plant survey data. Some problems in the original scale-up procedures were identified. The scale-up procedure was therefore modified to allow the predicted ball mill performance to match the observed one. The calibrated scale-up procedure was used to predict the Cylpebs performance in the full scale industrial mill using the laboratory tests results. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The magnesium alloy AM-SC1 has been developed as a creep-resistant automotive engine block material. This paper outlines its corrosion performance under laboratory test conditions, considering corrosion on both the external and internal surfaces. This study found that AM-SC1 has a corrosion performance comparable to AZ91 when subjected to an aggressive salt-spray environment or in galvanic-coupling environments. This article further demonstrates that, with the appropriate selection of a commercially available engine coolant, the internal corrosion of AM-SC1 can be maintained at a tolerable level. In addition, internal corrosion resistance can be significantly improved by the addition of fluorides to the coolant solution. It is concluded that AM-SC1 can be successfully used in an engine environment provided that some simple corrosion-prevention strategies are adopted.
Resumo:
Numerical modelling has been used to examine the relationship between the results of two commonly used methods of assessing the propensity of coal to spontaneous combustion, the R70 and Relative Ignition Temperature tests, and the likely behaviour in situ. The criticality of various parameters has been examined and a method of utilising critical self-heating parameters has been developed. This study shows that on their own, the laboratory test results do not provide a reliable guide to in situ behaviour but can be used in combination to considerably increase the ability to predict spontaneous combustion behaviour.