2 resultados para LTL
em University of Queensland eSpace - Australia
Resumo:
Since Z, being a state-based language, describes a system in terms of its state and potential state changes, it is natural to want to describe properties of a specified system also in terms of its state. One means of doing this is to use Linear Temporal Logic (LTL) in which properties about the state of a system over time can be captured. This, however, raises the question of whether these properties are preserved under refinement. Refinement is observation preserving and the state of a specified system is regarded as internal and, hence, non-observable. In this paper, we investigate this issue by addressing the following questions. Given that a Z specification A is refined by a Z specification C, and that P is a temporal logic property which holds for A, what temporal logic property Q can we deduce holds for C? Furthermore, under what circumstances does the property Q preserve the intended meaning of the property P? The paper answers these questions for LTL, but the approach could also be applied to other temporal logics over states such as CTL and the mgr-calculus.
Resumo:
This paper presents a framework for compositional verification of Object-Z specifications. Its key feature is a proof rule based on decomposition of hierarchical Object-Z models. For each component in the hierarchy local properties are proven in a single proof step. However, we do not consider components in isolation. Instead, components are envisaged in the context of the referencing super-component and proof steps involve assumptions on properties of the sub-components. The framework is defined for Linear Temporal Logic (LTL)