105 resultados para LINEAR ELASTIC FRACTURE MECHANICS

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite-element method is used to study the elastic properties of random three-dimensional porous materials with highly interconnected pores. We show that Young's modulus, E, is practically independent of Poisson's ratio of the solid phase, nu(s), over the entire solid fraction range, and Poisson's ratio, nu, becomes independent of nu(s) as the percolation threshold is approached. We represent this behaviour of nu in a flow diagram. This interesting but approximate behaviour is very similar to the exactly known behaviour in two-dimensional porous materials. In addition, the behaviour of nu versus nu(s) appears to imply that information in the dilute porosity limit can affect behaviour in the percolation threshold limit. We summarize the finite-element results in terms of simple structure-property relations, instead of tables of data, to make it easier to apply the computational results. Without using accurate numerical computations, one is limited to various effective medium theories and rigorous approximations like bounds and expansions. The accuracy of these equations is unknown for general porous media. To verify a particular theory it is important to check that it predicts both isotropic elastic moduli, i.e. prediction of Young's modulus alone is necessary but not sufficient. The subtleties of Poisson's ratio behaviour actually provide a very effective method for showing differences between the theories and demonstrating their ranges of validity. We find that for moderate- to high-porosity materials, none of the analytical theories is accurate and, at present, numerical techniques must be relied upon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fracture mechanics tests were carried out for AerMet 100 in distilled water and NaCl (3.5 and 35 gl(-1)). The initiation period at higher values of the stress intensity factor indicated that load application in the stress corrosion cracking (SCC) environment is a necessary but not sufficient factor for SCC and that time is needed for some other factor (e.g., the local hydrogen concentration) to reach an appropriate value. The threshold stress intensity factor, K-ISSC, was found to increase with decreasing NaCl concentration. The plateau stress corrosion crack velocity was 2 x 10(-8) ms(-1) for NaCl (3.5 and 35 gl(-1)). The fracture mode was transgranular with small areas of an intergranular nature. (C) 1998 Chapman & Hall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the first paper in a study on the influence of the environment on the crack tip strain field for AISI 4340. A stressing stage for the environmental scanning electron microscope (ESEM) was constructed which was capable of applying loads up to 60 kN to fracture-mechanics samples. The measurement of the crack tip strain field required preparation (by electron lithography or chemical etching) of a system of reference points spaced at similar to 5 mu m intervals on the sample surface, loading the sample inside an electron microscope, image processing procedures to measure the displacement at each reference point and calculation of the strain field. Two algorithms to calculate strain were evaluated. Possible sources of errors were calculation errors due to the algorithm, errors inherent in the image processing procedure and errors due to the limited precision of the displacement measurements. Estimation of the contribution of each source of error was performed. The technique allows measurement of the crack tip strain field over an area of 50 x 40 mu m with a strain precision better than +/- 0.02 at distances larger than 5 mu m from the crack tip. (C) 1999 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the preceding paper (Part I) force-deformation data were measured with the compression experiment in conjunction with the initial radial stretch ratio and the initial wall-thickness to cell-radius ratio for baker's yeast (Saccharomyces cerevisiae). In this paper, these data have been analysed with the mechanical model of Smith et al. (Smith, Moxham & Middelberg (1998) Chemical Engineering Science, 53, 3913-3922) with the wall constitutive behaviour defined a priori as incompressible and linear-elastic. This analysis determined the mean Young's modulus ((E) over bar), mean maximum von Mises stress-at-failure (<(sigma)over bar>(VM,f)) and mean maximum von Mises strain-at failure (<(epsilon)over bar>(VM,f)) to be (E) over bar = 150 +/- 15 MPa, <(sigma)over bar>(VM,f) = 70 +/- 4 MPa and <(epsilon)over bar>(VM,f) = 0.75 +/- 0.08, respectively. The mean Young's modulus was not dependent (P greater than or equal to 0.05) on external osmotic pressure (0-0.8 MPa) nor compression rate (1.03-7.68 mu m/s) suggesting the incompressible linear-elastic relationship is representative of the actual cell-wall constitutive behaviour. Hydraulic conductivities were also determined and were comparable to other similar cell types (0-2.5 mu m/MPa s). The hydraulic conductivity distribution was not dependent on external osmotic pressure (0-0.8 MPa) nor compression rate (1.03-7.68 mu m/s) suggesting inclusion of cell-wall permeability in the mechanical model is justified. <(epsilon)over bar>(VM,f) was independent of cell diameter and to a first-approximation unaffected (P greater than or equal to 0.01) by external osmotic pressure and compression rate, thus providing a reasonable failure criterion. This criterion states that the cell-wall material will break when the strain exceeds <(epsilon)over bar>(VM,f) = 0.75 +/- 0.08. Variability in overall cell strength during compression was shown to be primarily due to biological variability in the maximum von Mises strain-at-failure. These data represent the first estimates of cell-wall material properties for yeast and the first fundamental analysis of cell-compression data. They are essential for describing cell-disruption at the fundamental level of fluid-cell interactions in general bioprocesses. They also provide valuable new measurements for yeast-cell physiologists. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm for explicit integration of structural dynamics problems with multiple time steps is proposed that averages accelerations to obtain subcycle states at a nodal interface between regions integrated with different time steps. With integer time step ratios, the resulting subcycle updates at the interface sum to give the same effect as a central difference update over a major cycle. The algorithm is shown to have good accuracy, and stability properties in linear elastic analysis similar to those of constant velocity subcycling algorithms. The implementation of a generalised form of the algorithm with non-integer time step ratios is presented. (C) 1997 by John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the current knowledge and understanding of martensitic transformations in ceramics - the tetragonal to monoclinic transformation in zirconia in particular. This martensitic transformation is the key to transformation toughening in zirconia ceramics. A very considerable body of experimental data on the characteristics of this transformation is now available. In addition, theoretical predictions can be made using the phenomenological theory of martensitic transformations. As the paper will illustrate, the phenomenological theory is capable of explaining all the reported microstructural and crystallographic features of the transformation in zirconia and in some other ceramic systems. Hence the theory, supported by experiment, can be used with considerable confidence to provide the quantitative data that is essential for developing a credible, comprehensive understanding of the transformation toughening process. A critical feature in transformation toughening is the shape strain that accompanies the transformation. This shape strain, or nucleation strain, determines whether or not the stress-induced martensitic transformation can occur at the tip of a potentially dangerous crack. If transformation does take place, then it is the net transformation strain left behind in the transformed region that provides toughening by hindering crack growth. The fracture mechanics based models for transformation toughening, therefore, depend on having a full understanding of the characteristics of the martensitic transformation and, in particular, on being able to specify both these strains. A review of the development of the models for transformation toughening shows that their refinement and improvement over the last couple of decades has been largely a result of the inclusion of more of the characteristics of the stress-induced martensitic transformation. The paper advances an improved model for the stress-induced martensitic transformation and the strains resulting from the transformation. This model, which separates the nucleation strain from the subsequent net transformation strain, is shown to be superior to any of the constitutive models currently available. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of a circumferential crack in a hollow section beam is investigated using coupled response measurements. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. This matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The suitability of the mode coupling methodology is first demonstrated analytically. Laboratory test results are then presented for circular hollow section beams with artificially generated cracks of varying severity. It is shown that this method has the potential as a damage detection tool for mechanical structures. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the buckling phenomenon of a tubular truss with unsupported length through a full-scale test and presents a practical computational method for the design of the trusses allowing for the contribution of torsional stiffness against buckling, of which the effect has never been considered previously by others. The current practice for the design of a planar truss has largely been based on the linear elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a structural system against buckling. The over-simplified analytical technique is unable to provide a realistic and an economical design to a structure. In this paper the stability theory is applied to the second-order analysis and design of the structural form, with detailed allowance for the instability and second-order effects in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed method to the stability design of a commonly adopted truss system used in support of glass panels in which lateral bracing members are highly undesirable for economical and aesthetic reasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plastic yield criteria for porous ductile materials are explored numerically using the finite-element technique. The cases of spherical voids arranged in simple cubic, body-centred cubic and face-centred cubic arrays are investigated with void volume fractions ranging from 2 % through to the percolation limit (over 90 %). Arbitrary triaxial macroscopic stress states and two definitions of yield are explored. The numerical data demonstrates that the yield criteria depend linearly on the determinant of the macroscopic stress tensor for the case of simple-cubic and body-centred cubic arrays - in contrast to the famous Gurson-Tvergaard-Needleman (GTN) formula - while there is no such dependence for face-centred cubic arrays within the accuracy of the finite-element discretisation. The data are well fit by a simple extension of the GTN formula which is valid for all void volume fractions, with yield-function convexity constraining the form of the extension in terms of parameters in the original formula. Simple cubic structures are more resistant to shear, while body-centred and face-centred structures are more resistant to hydrostatic pressure. The two yield surfaces corresponding to the two definitions of yield are not related by a simple scaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peak adolescent fracture incidence at the distal end of the radius coincides with a decline in size-corrected BMD in both boys and girls. Peak gains in bone area preceded peak gains in BMC in a longitudinal sample of boys and girls, supporting the theory that the dissociation between skeletal expansion and skeletal mineralization results in a period of relative bone weakness. Introduction: The high incidence of fracture in adolescence may be related to a period of relative skeletal fragility resulting from dissociation between bone expansion and bone mineralization during the growing years. The aim of this study was to examine the relationship between changes in size-corrected BMD (BMDsc) and peak distal radius fracture incidence in boys and girls. Materials and Methods: Subjects were 41 boys and 46 girls measured annually (DXA; Hologic 2000) over the adolescent growth period and again in young adulthood. Ages of peak height velocity (PHV), peak BMC velocity (PBMCV), and peak bone area (BA) velocity (PBAV) were determined for each child. To control for maturational differences, subjects were aligned on PHV. BMDsc was calculated by first regressing the natural logarithms of BMC and BA. The power coefficient (pc) values from this analysis were used as follows: BMDsc = BMC/BA(pc). Results: BMDsc decreased significantly before the age of PHV and then increased until 4 years after PHV. The peak rates in radial fractures (reported from previous work) in both boys and girls coincided with the age of negative velocity in BMDsc; the age of peak BA velocity (PBAV) preceded the age of peak BMC velocity (PBMCV) by 0.5 years in both boys and girls. Conclusions: There is a clear dissociation between PBMCV and PBAV in boys and girls. BMDsc declines before age of PHV before rebounding after PHV. The timing of these events coincides directly with reported fracture rates of the distal end of the radius. Thus, the results support the theory that there is a period of relative skeletal weakness during the adolescent growth period caused, in part, by a draw on cortical bone to meet the mineral demands of the expanding skeleton resulting in a temporary increased fracture risk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Performance prediction models for partial face mechanical excavators, when developed in laboratory conditions, depend on relating the results of a set of rock property tests and indices to specific cutting energy (SE) for various rock types. There exist some studies in the literature aiming to correlate the geotechnical properties of intact rocks with the SE, especially for massive and widely jointed rock environments. However, those including direct and/or indirect measures of rock fracture parameters such as rock brittleness and fracture toughness, along with the other rock parameters expressing different aspects of rock behavior under drag tools (picks), are rather limited. With this study, it was aimed to investigate the relationships between the indirect measures of rock brittleness and fracture toughness and the SE depending on the results of a new and two previous linear rock cutting programmes. Relationships between the SE, rock strength parameters, and the rock index tests have also been investigated in this study. Sandstone samples taken from the different fields around Ankara, Turkey were used in the new testing programme. Detailed mineralogical analyses, petrographic studies, and rock mechanics and rock cutting tests were performed on these selected sandstone specimens. The assessment of rock cuttability was based on the SE. Three different brittleness indices (B1, B2, and B4) were calculated for sandstones samples, whereas a toughness index (T-i), being developed by Atkinson et al.(1), was employed to represent the indirect rock fracture toughness. The relationships between the SE and the large amounts of new data obtained from the mineralogical analyses, petrographic studies, rock mechanics, and linear rock cutting tests were evaluated by using bivariate correlation and curve fitting techniques, variance analysis, and Student's t-test. Rock cutting and rock property testing data that came from well-known studies of McFeat-Smith and Fowell(2) and Roxborough and Philips(3) have also been employed in statistical analyses together with the new data. Laboratory tests and subsequent analyses revealed that there were close correlations between the SE and B4 whereas no statistically significant correlation has been found between the SE and T-i. Uniaxial compressive and Brazilian tensile strengths and Shore scleroscope hardness of sandstones also exhibited strong relationships with the SE. NCB cone indenter test had the greatest influence on the SE among the other engineering properties of rocks, confirming the previous studies in rock cutting and mechanical excavation. Therefore, it was recommended to employ easy-to-use index tests of NCB cone indenter and Shore scleroscope in the estimation of laboratory SE of sandstones ranging from very low to high strengths in the absence of a rock cutting rig to measure it until the easy-to-use universal measures of the rock brittleness and especially the rock fracture toughness, being an intrinsic rock property, are developed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strain localisation is a widespread phenomenon often observed in shear and compressive loading of geomaterials, for example, the fault gouge. It is believed that the main mechanisms of strain localisation are strain softening and mismatch between dilatancy and pressure sensitivity. Observations show that gouge deformation is accompanied by considerable rotations of grains. In our previous work as a model for gouge material, we proposed a continuum description for an assembly of particles of equal radius in which the particle rotation is treated as an independent degree of freedom. We showed that there exist critical values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-surface layers of the fault, even in the absence of inelasticity. Here, we generalise the model to the case of finite deformations characteristic for the gouge deformation. We derive objective constitutive relationships relating the Jaumann rates of stress and moment stress to the relative strain and curvature rates, respectively. The model suggests that the pattern of localisation remains the same as in the linear case. However, the presence of the Jaumann terms leads to the emergence of non-zero normal stresses acting along and perpendicular to the shear layer (with zero hydrostatic pressure), and localised along the mid-line of the gouge; these stress components are absent in the linear model of simple shear. These additional normal stresses, albeit small, cause a change in the direction in which the maximal normal stresses act and in which en-echelon fracturing is formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics (SED), a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system's nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory for continuous variables.