6 resultados para LIGNIN
em University of Queensland eSpace - Australia
Resumo:
Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months ( Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia's northern grains region. Cumulative net N mineralised from the long-term ( 30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (N-o) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of CO2 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19-28% of applied organic C mineralised) than the Wet PPS (35-58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R-2 = 0.96), although it was
Resumo:
Forty-four soils from under native vegetation and a range of management practices following clearing were analysed for ‘labile’ organic carbon (OC) using both the particulate organic carbon (POC) and the 333 mm KmnO4 (MnoxC) methods. Although there was some correlation between the 2 methods, the POC method was more sensitive by about a factor of 2 to rapid loss in OC as a result of management or land-use change. Unlike the POC method, the MnoxC method was insensitive to rapid gains in TOC following establishment of pasture on degraded soil. The MnoxC method was shown to be particularly sensitive to the presence of lignin or lignin-like compounds and therefore is likely to be very sensitive to the nature of the vegetation present at or near the time of sampling and explains the insensitivity of this method to OC gain under pasture. The presence of charcoal is an issue with both techniques, but whereas the charcoal contribution to the POC fraction can be assessed, the MnoxC method cannot distinguish between charcoal and most biomolecules found in soil. Because of these limitations, the MnoxC method should not be applied indiscriminately across different soil types and management practices.
Resumo:
Plant litter and fine roots are important in maintaining soil organic carbon (C) levels as well as for nutrient cycling. The decomposition of surface-placed litter and fine roots of wheat ( Triticum aestivum ), lucerne ( Medicago sativa ), buffel grass ( Cenchrus ciliaris ), and mulga ( Acacia aneura ), placed at 10-cm and 30-cm depths, was studied in the field in a Rhodic Paleustalf. After 2 years, = 60% of mulga roots and twigs remained undecomposed. The rate of decomposition varied from 4.2 year -1 for wheat roots to 0.22 year -1 for mulga twigs, which was significantly correlated with the lignin concentration of both tops and roots. Aryl+O-aryl C concentration, as measured by 13 C nuclear magnetic resonance spectroscopy, was also significantly correlated with the decomposition parameters, although with a lower R 2 value than the lignin concentration. Thus, lignin concentration provides a good predictor of litter and fine root decomposition in the field.
Resumo:
The effect of feed restriction on water balance and nutrient utilization was investigated in individually penned Boer x Saanen kids. Twenty-two male Boer x Saanen kids with an initial average live weight (LW) of 15 kg were used. Seven kids were slaughtered at the beginning of the experiment (reference animals) and the remainders were allocated to one of the three treatments (0, 30 and 60% restriction) and therefore there were five kids per treatment. The feed intake for the 0% restriction treatment animals determined the intake for the animals in the 30 and 60% restriction treatment. When the animals in the 0% restriction treatment group reached 25 kg LW, the animals in the 30 and 60% restriction treatment groups were also slaughtered. There was a negative relationship between DMI and water intake. The digestibility coefficients for DM, OM, carbohydrates, ash, ether extract, energy, NDF, ADF and lignin did not differ between treatments, whereas the digestibility coefficient for CP was different between treatment groups. The highest metabolic water production was in animals in the 0% restriction treatment group. No significant differences were observed in the composition of gastro-intestinal tract contents of the goats in the different treatments. Lower water retention was found in the animals in the 60% restriction treatment group. The study showed that feed restriction affected water intake, CP digestibility and water retention in the body of the kid goats. This experiment demonstrated that DM:water intake ratio changed when severe feed restriction was applied (60% restriction) and water was freely available. It shows a different pattern of behaviour of penned goats, particularly if feed intake is restricted and perhaps caution is needed to extrapolate results from nutritional and physiological trials in pens to goats at pasture. (c) 2005 Elsevier BX All rights reserved.
Resumo:
'Specking' on harvested freesia (Freesia hybrida) flowers is a problem worldwide. The disease is caused by the fungal pathogen Botrytis cinerea. This disease symptom detracts from appearance and reduces marketability of the flowers. Unlike other important cut flower crops (e.g. gerbera), the mode of infection and epidemiology of postharvest freesia flower specking caused by B. cinerea has not been reported. Epidemiological studies were carried out under simulated conditions typical of those occurring during postharvest handling of freesia flowers. Infection of freesia flowers by B. cinerea occurred when a conidium germinated, formed a germ tube(s) and penetrated epidermal cells. Fungal hyphae then colonised adjacent cells, resulting in visible lesions. Different host reactions were observed on freesia 'Cote d'Azur' petals at 20 degrees C compared to 5 degrees C. The infection process was relatively rapid at 20 degrees C, with visible lesions produced within 7 h of incubation. However, lesion expansion ceased after 24 h of incubation. Infection was slower at 5 degrees C, with visible lesions produced after 48 h of incubation. However, lesion development at 5 degrees C was continuous, with lesions expanding over 4 days. Light microscopy observations revealed increased host defence reactions during infection. These reactions involved production of phenolic compounds, probably lignin and/or callose, around infection sites. Such substances may play a role in restricting petal colonisation and lesion expansion. Disease severity and lesion numbers on freesia flowers incubated at 12 degrees C were higher, but not significantly higher (P > 0.05), than on those incubated at 20 degrees C. Disease severity and progression were differentially mediated by temperature and relative humidity (R. H.). Infection of freesia flowers was severe at 100% R. H. for all three incubation temperatures of 5, 12 and 20 degrees C. In contrast, no lesions were produced at 80 to 90% R. H. at either 5 or 20 degrees C.