3 resultados para LIDT Single-pulse laser

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion-induced blindness (MIB) is a phenomenon, perhaps related to perceptual rivalry, where stationary targets disappear and reappear in a cyclic mode when viewed against a background (mask) of coherent, apparent 3-D motion. Since MIB has recently been shown to share similar temporal properties with binocular rivalry, we probed the appearance-disappearance cycle of MIB using unilateral, single-pulse transcranial magnetic stimulation (TMS)-a manipulation that has previously been shown to influence binocular rivalry. Effects were seen for both hemispheres when the timing of TMS was determined prospectively on the basis of a given subject's appearance-disappearance cycle, so that it occurred on average around 300 ms before the time of perceptual switch. Magnetic stimulation of either hemisphere shortened the time to switch from appearance to disappearance and vice versa. However, TMS of left posterior parietal cortex more selectively shortened the disappearance time of the targets if delivered in phase with the disappearance cycle, but lengthened it if TMS was delivered in the appearance phase after the perceptual switch. Opposite effects were seen in the right hemisphere, although less marked than the left-hemisphere effects. As well as sharing temporal characteristics with binocular rivalry, MIB therefore seems to share a similar underlying mechanism of interhemispheric modulation. Interhemispheric switching may thus provide a common temporal framework for uniting the diverse, multilevel phenomena of perceptual rivalry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an investigation of the machinability of a Ni50.6Ti49.4 alloy by two machining methods: electrical discharge machining and femtosecond laser machining. The electrical discharge wire cutting used resulted in an average surface roughness of similar to 1.2 mu m and a heat-affected layer of 150 mu m depth. In the laser machining, an ultrashort pulse laser with a width of 150 A was used to minimize the effect of laser-generated heat on the surface integrity. This resulted in a much smaller surface roughness of similar to 0.4 mm and a heat-affected layer of only 50 mu m. The two machining methods were compared as regards machined surface integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical-cavity surface-emitting lasers (VCSELs) and microlenses can be used to implement free space optical interconnects (FSOIs) which do not suffer from the bandwidth limitations inherent in metallic interconnects. A comprehensive link equation describing the effects of both optical and electrical noise is introduced. We have evaluated FSOI performance by examining the following metrics: the space-bandwidth product (SBP), describing the density of channels and aggregate bandwidth that can be achieved, and the carrier-to-noise ratio (CNR), which represents the relative strength of the carrier signal. The mode expansion method (MEM) was used to account for the primary cause of optical noise: laser beam diffraction. While the literature commonly assumes an ideal single-mode laser beam, we consider the experimentally determined multimodal structure of a VCSEL beam in our calculations. It was found that maximum achievable interconnect length and density for a given CNR was significantly reduced when the higher order transverse modes were present in Simulations. However, the Simulations demonstrate that free-space optical interconnects are still a suitable solution for the communications bottleneck, despite the adverse effects introduced by transverse modes.