5 resultados para LIDOCAINE
em University of Queensland eSpace - Australia
Resumo:
Purpose, An in vitro study was carried out to determine the iontophoretic permeability of local anesthetics through human epidermis. The relationship between physicochemical structure and the permeability of these solutes was then examined using an ionic mobility-pore model developed to define quantitative relationships. Methods. The iontophoretic permeability of both ester-type anesthetics (procaine, butacaine, tetracaine) and amide-type anesthetics (prilocaine, mepivacaine, lidocaine, bupivacaine, etidocaine, cinchocaine) were determined through excised human epidermis over 2 hrs using a constant d.c. current and Ag/AgCl electrodes. Individual ion mobilities were determined from conductivity measurements in aqueous solutions. Multiple stepwise regression was applied to interrelate the iontophoretic permeability of the solutes with their physical properties to examine the appropriateness of the ionic mobility-pore model and to determine the best predictor of iontophoretic permeability of the local anesthetics. Results. The logarithm of the iontophoretic permeability coefficient (log PCj,iont) for local anesthetics was directly related to the log ionic mobility and MW for the free volume form of the model when other conditions are held constant. Multiple linear regressions confirmed that log PCj,iont was best defined by ionic mobility (and its determinants: conductivity, pK(a) and MW) and MW. Conclusions. Our results suggest that of the properties studied, the best predictors of iontophoretic transport of local anesthetics are ionic mobility (or pK(a)) and molecular size. These predictions are consistent with the ionic mobility pore model determined by the mobility of ions in the aqueous solution, the total current, epidermal permselectivity and other factors as defined by the model.
Resumo:
The targeting of topically applied drug molecules into tissues below a site of application requires an understanding of the complex interrelationships between the drug, its formulation, the barrier properties of the skin, and the physiological processes occurring below the skin that are responsible for drug clearance from the site, tissue, and/or systemic distribution and eventual elimination. There is still a certain amount of controversy over the ability of topically applied drugs to penetrate into deeper tissues by diffusion or whether this occurs by redistribution in the systemic circulation. The major focus of our work in this area has been in determining how changes in drug structure and physicochemical properties, such as protein binding and lipophilicity, affect drug clearance into the local dermal microcirculation and lymphatics, as well as subsequent distribution into deeper tissues below an application site. The present study outlines our recent thinking on the drug molecule optimal physical attributes, in terms of plasma and tissue partitioning behaviour, that offer the greatest potential for deep tissue targeting. Drug Dev. Res. 46:309-315, 1999. (C) 1999 Wiley-Liss, Inc.
Resumo:
Absorption kinetics of solutes given with the subcutaneous administration of fluids is ill-defined. The gamma emitter, technitium pertechnetate, enabled estimates of absorption rate to be estimated independently using two approaches. In the first approach, the counts remaining at the site were estimated by imaging above the subcutaneous administration site, whereas in the second approach, the plasma technetium concentration-time profiles were monitored up to 8 hr after technetium administration. Boluses of technetium pertechnetate were given both intravenously and subcutaneously on separate occasions with a multiple dosing regimen using three doses on each occasion. The disposition of technetium after iv administration was best described by biexponential kinetics with a V-ss of 0.30 +/- 0.11 L/kg and a clearance of 30.0 +/- 13.1 ml/min. The subcutaneous absorption kinetics was best described as a single exponential process with a half-life of 18.16 +/- 3.97 min by image analysis and a half-life of 11.58 +/- 2.48 min using plasma technetium time data. The bioavailability of technetium by the subcutaneous route was estimated to be 0.96 +/- 0.12. The absorption half-life showed no consistent change with the duration of the subcutaneous infusion. The amount remaining at the absorption site with time was similar when analyzed using image analysis, and plasma concentrations assuming multiexponential disposition kinetics and a first-order absorption process. Profiles of fraction remaining at the absorption sire generated by deconvolution analysis, image analysis, and assumption of a constant first-order absorption process were similar. Slowing of absorption from the subcutaneous administration site is apparent after the last bolus dose in three of the subjects and can De associated with the stopping of the infusion. In a fourth subject, the retention of technetium at the subcutaneous site is more consistent with accumulation of technetium near the absorption site as a result of systemic recirculation.
Resumo:
The outflow-concentration-time profiles for lignocaine (lidocaine) and its metabolites have been measured after bolus impulse administration of [C-14]lignocaine into the perfused rat liver. Livers from female Sprague-Dawley rats were perfused in a once-through fashion with red-blood-cell-free Krebs-Henseleit buffer containing 0 or 2% bovine serum albumin. Perfusate flow rates of 20 and 30 mL min(-1) were used and both normal and retrograde flow directions were employed. Significant amounts of metabolite were detected in the effluent perfusate soon after lignocaine injection. The early appearance of metabolite contributed to bimodal outflow profiles observed for total C-14 radioactivity. The lignocaine outflow profiles were well characterized by the two-compartment dispersion model, with efflux rate << influx rate. The profiles for lignocaine metabolites were also characterized in terms of a simplified two-compartment dispersion model. Lignocaine was found to be extensively metabolized under the experimental conditions with the hepatic availability ranging between 0.09 and 0.18. Generally lignocaine and metabolite availability showed no significant change with alterations in perfusate flow rate from 20 to 30 mt min(-1) or protein content from 0 to 2%. A significant increase in lignocaine availability occurred when 1200 mu M unlabelled lignocaine was added to the perfusate. Solute mean transit times generally decreased with increasing flow rate and with increasing perfusate protein content. The results confirm that lignocaine pharmacokinetics in the liver closely follow the predictions of the well-stirred model. The increase in lignocaine availability when 1200 mu M unlabelled lignocaine was added to the perfusate is consistent with saturation of the hydroxylation metabolic pathways of lignocaine metabolism.